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1. Introduction

Zadeh [26] introduced the concept of a fuzzy set which motivated a lot of
mathematical activity on the generalization of the notion of a fuzzy set. Heilpern [8]
introduced the concept of fuzzy mapping and proved a fixed point theorem for fuzzy
contraction mappings which is a generalization of the fixed point theorem for mul-
tivalued mappings of Nadler [13]. In 1984, Kaleva and Seikkala [10] introduced the
concept of a fuzzy metric space by setting the distance between two points to be a
nonnegative fuzzy real number. The fuzzy metric spaces of both Kaleva and Seikkala
type and George- Veeramani type have some relationships whith the Menger proba-
bilistic metric spaces (see [10]). It is well known that the Kaleva and Seikkala,s type
fuzzy metric space possesses rich structure with suitable choices of binary operations.

Recently, Huang and Wu [6] investigated the completion of the Kaleva and Seikkala,s
type fuzzy metric space. The weak contraction was defined by Alber and Guerre -
Delabriere is one of the interesting generalizations of Banach contraction ( see [1])
and Xiao, Zhu and Jin consider some contractions of Alber -Guerre -Delabriere type
in a FMS (see [25]) and so establish some fuzzy versions of Kannan-Reich type the-
orem (see [15, 16, 17]). We refer to [19, 20, 21, 3, 11, 18] for additional results on
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fuzzy metric spaces.

The aim of this work is to establish the existence and unicity of fixed points for
mappings in fuzzy metric spaces. Our result generalizes, improves and extends many
known results from related literature [25].

2. Preliminaries

Throughout this paper, let Z+ be the set of all positive integers, R = (−∞,+∞)
and R+ = [0,+∞). If Φ : R+ → R+ is a function and r ∈ R+ , then Φn(r) de-
notes the nth iteration of Φ(r) and Φ−1({0}) = {r ∈ R+ : Φ(r) = 0}. For the
details of fuzzy real number, we refer the reader to Dubois and Prade [4, 5] , Kaleva
and Seikkala [10], Mizumoto and Tanaka [12], Wu and Ma [22], Bag and Samanta [2].

Definition 2.1 ( cf. Dubois and Prad [4, 5], Xiao and Zhu [23]). A mapping
η : R → [0, 1] is called a fuzzy real number or fuzzy interval, whose α − level set is
denoted by [η]α = {q ∈ R : η(q) ≥ α}, if it satisfies two axioms:

(i) there exists q0 ∈ R such that η(q0) = 1
(i) [η]α = [λα, pα] is a closed interval of R for each α ∈ (0, 1], where −∞ <

λα ≤ pα < +∞.

The set of all such fuzzy real numbers is denoted by z . If η ∈ z and η(q) = 0
whenever q < 0, then η is called a nonnegative fuzzy real number, and by z+ we
mean the set of all nonnegative fuzzy real numbers. If λα = −∞ and pα = +∞ are
admissible, then, for the sake of clarity, η is called a generalized fuzzy real number.
The sets of all generalized fuzzy real numbers or all generalized nonnegative fuzzy
real numbers are denoted by z∞ and z+

∞, respectively. In that case, if λα = −∞,
for instance, then [λα, pα] means the interval (−∞, pα].

The notation 0 stands for the fuzzy number satisfying 0(0) = 1 and 0(q) = 0 if
q 6= 0. Clearly, 0 ∈ z+. R can be embedded in z: if a ∈ R, than a ∈ z satisfies
a(q) = 0(q − a).

Lemma 2.1 (Xiao et al [23, 24]). Let η ∈ z, α ∈ (0, 1], and [η]α = [λα, pα].
Then
(1) limq→−∞ η(q) = 0 = limq→+∞ η(q).
(2) η(q) is a left continuous and non- increasing function for q ∈ (λ1,+∞).
(3) pα is a left continuous and non- increasing function for α ∈ (0, 1].

Definition 2.2 (cf. Kaleva and Seikkala [10]). Suppose that X a non- empty set
and that d is a mapping from X ×X in to z+. Let L,R : [0, 1]× [0, 1] −→ [0, 1] be
two symmetric and nondecreasing functions such that L(0, 0) = 0 and R(1, 1) = 1.
For α ∈ (0, 1] and x, y ∈ X, define the mapping

[d(x, y)]α = [λα(x, y), pα(x, y)].

The quadruple (X, d, L,R) is called a fuzzy metric space ( briefly, FMS), and d is
called a fuzzy metric, if
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(D1) d(x, y) = 0− if and only if x = y,
(D2) d(x, y) = d(y, x) for all x, y ∈ X,
(D3) for all x, y, z ∈ X :

(D3L) d(x, y)(p + q) ≥ L(d(x, z)(p), d(z, y)(q)), whenever p ≤ λ1(x, z), q ≤
λ1(z, y) and

p+ q ≤ λ1(x, y),
(D3R) d(x, y)(p + q) ≤ R(d(x, z)(p), d(z, y)(q)), whenever p ≤ λ1(x, z), q ≤

λ1(z, y) and
p+ q ≤ λ1(x, y).

If d is a mapping from X into z+
∞ and (X, d, L,R) satisfies (D1) -(D3), then

(X, d, L,R) is called a generalized fuzzy metric space (briefly, GFMS).

From Lemma 2.1 and Definition 2.2 we obtain the following consequence.

Lemma 2.2. Let (X,d,L,R) be a FMS , [d(x, y)]t = [λt(x, y), pt(x, y)] for t ∈ (0, 1],
where x, y ∈ X are any two fixed elements. Then
(1) limq→−∞ d(x, y)(q) = 0 = limq→+∞ d(x, y)(q),
(2) d(x, y)(q) is a left continuous and non- increasing function for q ∈ (λ1(x, y),+∞),
(3) p(x, y)(q) is a left continuous and non- increasing function for t ∈ (0, 1].

Lemma 2.3 . Let (X,d,L,R) be a FMS. Then

(1) (R-1) ⇒ for each t ∈ (0, 1] [5],
pt(x, y) ≤ pt(x, z) + pt(z, y) for all x, y, z ∈ X .

(2) (R-2) ⇒ for each t ∈ (0, 1] there exists s = s(t) ∈ (0, t] such that [18]
pt(x, y) ≤ ps(x, z) + pt(z, y) for all x, y, z ∈ X.

(3) (R-3)⇒ for each t ∈ (0, 1] there exists s = s(t) ∈ (0, t] such that (cf. [6,17])
pt(x, y) ≤ ps(x, z) + ps(z, y) for all x, y, z ∈ X.

Lemma 2.4 ([18]). Let (X,d,L,R) be a FMS with (R-2). Thene for each t ∈ (0, 1],
pt(x, y) is continuous at (x, y) ∈ X ×X.

Using the similar manner given by Jachymski [9], we can obtain the following
lemmas whose proofs are omitted.

Lemma 2.5. Let Φ : R+ → R+be a function such that Φ−1({0}) = {0}.
(1) If Φ(r) < r and limq→r sup Φ(q) < r for all r > 0, then limn→∞Φn(r) = 0 for all
r > 0,
(2) If Φ is non-decreasing and limn→∞Φn(r) = 0 for all r > 0, then Φ(r) < r for all
r > 0.

Lemma 2.6. Let Ψ : R+ → R+ be a function such that Ψ−1({0}) = {0}.
(1) If Ψ(r) > r and limq→r inf Ψ(q) > r for all r > 0, then limn→∞Ψn(r) = +∞ for
all r > 0.
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(2) If Ψ is non-decreasing and limn→∞Ψn(r) = +∞ for all r > 0, then Ψ(r) > r for
all r > 0.

3. Main result

In the section, using the idea of the weak contraction was defined by Alber
-Guerre -Delabriere we prove the existence and unicity of fixed points for mappings
in fuzzy metric spaces.

Theorem 3.1 [25]. Let (X,d,L,R) be a complete FMS with (R-2) . Let ϕ : R+ −→
R+ be a nondecreasing function with ϕ−1({0}) = {0}. Let T : X −→ X be a
mapping such that

pt(Tx, Ty) ≤ pt(x, y)− ϕ(pt(x, y)) for all t ∈ (0, 1] and x, y ∈ X.

Then there exists a unique u ∈ X such that Tu = u.

Theorem 3.2 [25]. Let(X,d,L,R) be a complete FMS with (R-2). Let ϕ : R+ −→
R+ be a lower semi-continuous function with ϕ−1({0}) = {0}. Let T : X −→ X be
a mapping such that,

pt(Tx, Ty) ≤Mt(x, y)− ϕ(Mt(x, y)) for all t ∈ (0, 1] and x, y ∈ X,

where Mt(x, y) = max{pt(x, y), pt(Tx, x), pt(Ty, y)}. Then there exists a unique
u ∈ X such that Tu = u.

Now, we can prove the following Theorem.

Theorem 3.3. Let (X,d,L,R) be a complete FMS with (R-2). Let Ψ,Φ : R+ → R+

be a lower semi-continuous function with Ψ−1({0}),Φ−1({0}) = {0}. Let T : X −→
X be a mapping such that,

Ψ(pt(Tx, Ty)) ≤ ΨMt(x, y)− Φ(Mt(x, y),

for all t ∈ (0, 1] and x, y ∈ X, where Mt(x, y) = max{pt(x, y), pt(Tx, x), pt(Ty, y)}.
Then there exists a unique u ∈ X such that Tu = u.

Proof. Taking x0 ∈ X, we construct a sequence {xn}∞n=1 by xn = Txn−1. Let
t ∈ (0, 1] and an(t) = pt(xn, xn−1). Then, we have

(3.1)
Mt(xn, xn−1) = max{pt(xn, xn−1), pt(Txn, xn), pt(Txn−1, xn−1)}

= max{pt(xn, xn−1), pt(xn+1, xn)} = max{an(t), an+1(t)}.

By (1), we have

(3.2) Ψ(an+1(t)) = Ψ(pt(Txn, Txn−1)}) ≤ Ψ(Mt(xn, xn−1))− Φ(Mt(xn, xn−1)).

Now we show that an+1(t) ≤ an(t). Suppose opposite that an+1(t) > an(t) ≥ 0.
Then, from (2) and (3) it follows that Mt(xn, xn−1) = an+1(t) and

Ψ(an+1(t)) ≤ Ψ(an+1(t))− Φ(an+1(t)) < Ψ(an+1(t)),
4
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which is a contradiction. Hence , {an(t)} is a nonnegative non- increasing sequence,
and so it possesses a limit a(t) ≥ 0. By (3), we have Ψ(an+1(t)) ≤ Ψ(an(t)) −
Φ(an(t)). From the lower semi- continuity of Ψ,Φ it follows that

a(t) = lim Ψ(an+1(t)) ≤ lim
n→∞

inf[Ψ(an(t))− Φ(an(t))] = Ψ(a(t))− lim
n→∞

sup Φ(an(t))

≤ Ψ(an(t))− lim
q→a(t)

inf Φ(q) ≤ Ψ(a(t))− Φ(a(t)),

i.e., Φ(a(t)) = 0. Hence, we have

(3.3) lim
n→∞

Ψ(an(t)) = a(t) = 0 for all t ∈ (0, 1].

In the next step we show that {xn} is a cauchy sequence . Since (X,d,L,R) is with
(R-2), by Lemma 2.3(2), there exists s ∈ (0, t] such that

(3.4) pt(x, y) ≤ pt(x, z) + ps(z, y) for all x, y, z ∈ X.

Suppose opposite that {xn} is not a Cauchy sequence. Then there exists ε0 > 0 and
t ∈ (0, 1] for which we can find two subsequences {xmi} and {xni} of {xn}, where
mi is the smallest index, such that

(3.5) mi > ni ≥ i, pt(xmi, xni) ≥ ε0.

Thus, by (5) and (6), we have

ε0 ≤ pt(xmi, xni) ≤ ps(xmi, xmi−1) + pt(xmi−1, xni) ≤ ami(s) + ε0.

It follows from (4) that pt(xmi, xni)→ ε0 as i→∞. Observe that

Mt(xmi, xni) = max{pt(xmi, xni), pt(Txmi, xmi), pt(Txni, xni)}
= max{pt(xmi, xni), ami+1(t), ani+1(t)}.

This implies that Mt(xmi, xni)→ ε0 as i→∞. By (5) and(1), we have
(3.6)
Ψ(pt(xmi, xni) ≤ Ψ(ps(xmi, xmi+1) + pt(xmi+1, xni+1) + ps(xni+1, xni))

≤ Ψ(ami+1(s)) + Ψ(Mt(xmi, xni))− Φ((Mt(xmi, xni)) + Ψ(ani+1(s)).

Since Ψ,Φ is lower semi-continuous, from ( 4) and (7) it follows that

ε0 = lim
i→∞

Ψ(pt(xmi, xni)

≤ lim
i→∞

inf[Ψ(ami+1(s)) + Ψ(Mt(xmi, xni))− Φ((Mt(xmi, xni)) + Ψ(ani+1(s))],

= Ψε0 − lim
i→∞

sup Φ(Mt(xmi, xni)) ≤ Ψε0 − lim
q→ε0

inf Φ(q) ≤ Ψε0 − Φ(ε0).

Which is a contradiction. Hence, {xn} is a Cauchy sequence. As (X,d,L,R)is com-
plete, there exists u ∈ X such that limn→∞ xn = u. Thus, for each t ∈ (0, 1], we
have

Mt(xn−1, u) = max{pt(xn−1, u), pt(Txn−1, xn−1), pt(Tu, u)}
= max{pt(xn−1, u)), an(t), pt(Tu, u)} → pt(Tu, u) as n→∞.
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Using Lemma 2.4, Pt is continuous on X × X. Hence, from (1) and the lower
semi-continuity of Ψ,Φ we have

Ψ(pt(u, Tu)) = lim
n→∞

Ψ(pt(xn, Tu)) ≤ lim
n→∞

inf[Ψ(Mt(xn−1, u))− Φ((Mt(xn−1, u))]

= Ψ(pt(Tu, u))− lim
n→∞

sup Φ(Mt(xn−1, u))

≤ Ψ(pt(Tu, u))− lim
q→ pt(Tu,u)

inf Φ(q) ≤ Ψ(pt(Tu, u))− Φ(pt(Tu, u)).

This shows that pt(Tu, u) = 0 for all t ∈ (0, 1], i.e., Tu = u. If v ∈ X with Tv = v,
then, from(1) it follows that

Ψ(pt(u, v)) = Ψ(pt(Tu, Tv) ≤ Ψ(Mt(u, v))−Φ((Mt(u, v)) = Ψ(pt(u, v))−Φ(pt(u, v))

for all t ∈ (0, 1]. This shows that pt(u, v) = 0 for all t ∈ (0, 1], i.e., u = v. So, the
proof of Theorem 3.3 is finished. 2

Acknowledgements. The authors wish to thank the referee for reading the
manuscript and providing constructive comments.

References

[1] Y.I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert space, in : I.
Gohberg, Yu. Lyubich (Eds), New Results in Operator Theory and its Applications, Operator

Theory: Advances and Applications, 98, Birkhauser, Basel, Switzerland, (1997), 7–22.

[2] T. Bag, S.K. Samanta, Fuzzy bounded linear operator in Felbins type fuzzy normed, Fuzzy
Sets and Systems, 159 (2008) 685–707.

[3] S. Chauhan, W. Sintunavarat and P. Kumam, Common Fixed Point Theorems for Weakly

Compatible Mappings in Fuzzy Metric Spaces Using (JCLR) Property, Applied Mathematics,
3 (9), (2012), 976–982.

[4] D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J . Syst, Sci, 96 (1978) 613–626.

[5] D. Dubois, H. Prade, Fuzzy elements in a fuzzy set, in : proceeding of the 10 th International
fuzzy Systems Association (IFSA) Congress, Springer, Beijing, (2005), 55–60.

[6] H. Huang, C.X. Wu, On the completion of fuzzy metric spaces, Fuzzy Sets and Systems, 159
(2008) 2596–2605.

[7] H. Huang, C.X. Wu, On the triangle inequalities in fuzzy metric spaces, Inf. Sci, 177 (2007)

1063–1072.
[8] S. Heilpern, Fuzzy mappings and fuzzy fixed point theorems, J. Math. Anal. Appl,

83(1981)566–569.

[9] J. Jachymski, Equivalence of some contractivity properties over metrical structures, Proc. Am.
Math. Soc, 125 (1997) 2327–2335.

[10] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems, 12 (1984) 215–229.
[11] S. Manro, S. S. Bhatia, S. Kumar, P. Kumam, S. Dalal, Weakly Compatible Mappings along

with CLRS property in Fuzzy Metric Spaces, 2013, Year 2013 Article ID jnaa-00206, 12 Pages.
[12] M. Mizumoto, J. Tanaka, Some properties of fuzzy numbers, in : M.M. Gupta et al. (Eds),

Advances in Fuzzy Set Theory and A pplications, North-Holland, New York, (1979), 153–164.
Letters, 23 (2010) 1326–1330.

[13] S.B. Nadler, Multivalued contraction mappings, Pac. J. of Math, 30 (1969) 475–488.
[14] B.E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal, TMA, 47 (2001)

2683–2693.
[15] S. Reich, Kannans fixed point theorems, Boll, Uni. Mat. Ital, 4 (1971) 1–11.
[16] S. Reich, Some remarks concerning contractions mappings, Can. Math . Bull, 14 (1971) 121–

124.

[17] S. Reich, Fixed points of contractive functions, Boll. Uni. Mat. Ital, 5 (1972) 26–42.
[18] W. Sintunavarat, S. Chauhan and P. Kumam, Some fixed point results in modified intuition-

istic fuzzy metric spaces, Afrika Matematika, 25 (2) (2014) 461-473.

6



S.H. Rasouli et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx–xx

[19] W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible
mappings in fuzzy metric spaces, J. Appl Math, (2011), Article ID 637958, 14 Pages.

[20] W. Sintunavarat and P. Kumam, Fixed Point Theorems for a Generalized Intuitionistic Fuzzy
Contraction in Intuitionistic Fuzzy Metric Spaces, Thai J. Math, 10 (1) (2012) 123–135.

[21] W. Sintunavarat and P. Kumam, Common fixed points for R-weakly commuting in fuzzy

metric spaces, Ann Univ Ferrara, 58 (2012) 389–406.
[22] C.X. Wu, M. Ma, The Basic of Fuzzy Analysis, National Defence Industry press, Beijing ,

1991.

[23] J.Z. Xiao, X.H. Zhu, On linearly topological structure and property of fuzzy normed linear
spaces, Fuzzy Sets and Systems, 125 (2002)153–161.

[24] J.Z. Xiao, X.H. Zhu, X. Jin, Fixed point theorems for nonlinear contractions in Kaleva-

Seikkalas type fuzzy metric spaces, Fuzzy Sets and Systems, 200 (2012) 65-û83
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