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1 Introduction

It turned out to be milestone in the development of mathematics, when the
concept of fuzzy set was introduced by Zadeh [47] in 1965. After that many
authors developed the theory of fuzzy sets and their application. On the other
hand the concept of fuzzy sets was generalized as intuitionistic fuzzy set by
Atanassov [4] in 1984, which found applications in various �elds.
Many authors introduced the concept of fuzzy metric space in di¤erent ways.

George and Veeramani [16] modi�ed the concept of fuzzy metric space given by
Kramosil and Michalek [21] with the help of continuous t-norm and de�ned
Hausdor¤ topology of metric spaces which is later proved to be metrizable, they
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proved that every metric induces a fuzzy metric. In [17]; Grabiec proved fuzzy
versions of celebrated Banach �xed point theorem and Edelstein �xed point
theorem. Many authors proved �xed point theorems in fuzzy metric spaces
including [5; 9; 23; 25; 29; 36; 37; 38; 39; 46; 48]:
The concept of fuzzy metric space given by Kramosil and Michalek [21]

generalized by Gregori and Romaguera [18] and introduced the notion of fuzzy
quasi-metric space. Romaguera, Sapena and Tirado [31] proved the Banach
�xed point theorem in fuzzy quasi-metric spaces and applied the result to the
domain of words.
Park [27] using the idea of intuitionistic fuzzy sets, de�ned the notion of in-

tuitionistic fuzzy metric space by generalizing the notion of fuzzy metric space
given by George and Veeramani [16] with the help of continuous t-norm and
continuous t-conorm, while Alaca et al. [3] de�ned the notion of intuitionistic
fuzzy metric space as a generalization of fuzzy metric space given by Kramosil
and Michalek [21]: Alaca, Turkoglu and Yildiz [3] proved intuitionistic fuzzy
versions of the celebrated Banach �xed point theorem and Edelstein �xed point
theorem by using the notion of intuitionistic fuzzy metric space. In [40]; Sintu-
navarat and Kumam introduced a new intuitionistic fuzzy contraction mapping
which is more general than intuitionistic fuzzy contraction mapping given by a
Ra�and Noorani [28] and establish the new �xed point and common �xed point
theorems in intuitionistic fuzzy metric spaces. Many authors proved �xed point
theorems in intuitionistic fuzzy metric spaces including [1; 2; 13; 26; 30; 35; 45]:
The concept of intuitionistic fuzzy quasi-metric space was introduced by

Tirado [44] by generalizing the notion of intuitionistic fuzzy metric space given
by Alaca, Turkoglu and Yildiz [3] to the quasi-metric setting and gave intuition-
istic fuzzy quasi-metric version of the Banach contraction principle.
On the other hand, Saadati et al. [32] modi�ed the notion of intuitionistic

fuzzy metric space and de�ned the notion of modi�ed intuitionistic fuzzy met-
ric spaces with the help of continuous t-representable. Many authors proved
coincidence and common �xed point theorems in modi�ed intuitionistic fuzzy
metric spaces including [6; 7; 8; 19; 20; 24; 33; 41; 43]:
In this paper, we introduce the concept of modi�ed intuitionistic fuzzy quasi-

metric space by generalizing the notion of modi�ed intuitionistic fuzzy metric
space given by Saadati, Sedghi and Shobe [32] and prove Banach �xed point
theorem in modi�ed intuitionistic fuzzy quasi-metric space. Our results are the
genuine generalization of the results of Deshpande, Sharma and Handa [14]: The
existence of a solution for a recurrence equation which appears in the average
case analysis of Quicksort algorithms is obtained as an application.

2 Preliminaries

Lemma 2. 1. (Deschrijver and Kerre [11]): Consider the set L� and
operation �L�de�ned by

L� =
�
(x1; x2) : (x1; x2) 2 [0; 1]2 and x1 + x2 � 1

	
;
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(x1; x2) �L� (y1; y2) , x1 � y1 and x2 � y2 for every (x1; x2); (y1; y2) 2 L�:
Then (L�; �L�) is a complete lattice.

De�nition 2. 1. (Atanassov [4]): An intuitionistic fuzzy set A�; � in a
universe U is an object A�; � = f�A(u); �A(u)g; where, for all u 2 U; �A(u) 2 [0;
1] and �A(u) 2 [0; 1] are called the membership degree and non-membership
degree respectively of u in A�; � and further they satisfy �A(u) + �A(u) � 1:

For every zi = (xi; yi) 2 L� if ci 2 [0; 1] such that
nX
j=1

cj = 1 then it is easy to

see that

c1(x1; y1) + :::+ cn(xn; yn) =
nX
j=1

cj(xj ; yj) =

0@ nX
j=1

cjxj ;
nX
j=1

cjyj

1A 2 L�:

(2:1)
We denote its units by 0L� = (0; 1) and 1L� = (1; 0): Classically, a triangular
norm � = T on [0; 1] is de�ned as an increasing, commutative, associative
mapping T : [0; 1]2 ! [0; 1] satisfying T (1; x) = 1 � x = x; for all x 2 [0; 1]: A
triangular conorm S = � is de�ned as an increasing, commutative, associative
mapping S : [0; 1]2 ! [0; 1] satisfying S(0; x) = 0�x = x; for all x 2 [0; 1]:
Using the lattice (L�; �L�) these de�nitions can be straightforwardly extended.

De�nition 2. 2. (Deschrijver; Cornelis and Kerre [12]): A triangular
norm (t-norm) on L� is a mapping T : (L�)2 ! L� satisfying the following
conditions:

(8x 2 L�) (T (x; 1L�) = x) (boundary condition),
(8(x; y) 2 (L�)2) (T (x; y) = T (y; x)) (commutativity),
(8(x; y; z) 2 (L�)3) (T (x; T (y; z)) = T (T (x; y); z)) (associativity),
(8(x; x0; y; y0) 2 (L�)4) (x �L� x0 and y �L� y0 ) T (x; y) �L� T (x0; y0))
(monotonicity).

De�nition 2. 3. (Deschrijver and Kerre [11]; Deschrijver; Cornelis
andKerre [12]):A continuous t-norm T on L� is called continuous t-representable
if and only if there exist a continuous t-norm � and a continuous t-conorm � on
[0; 1] such that, for all x = (x1; x2); y = (y1; y2) 2 L�;

T (x; y) = (x1 � y1; x2�y2):

Now de�ne a sequence T n recursively by T 1 = T and

T n(x(1); :::; x(n+1)) = T (T n�1(x(1); :::; x(n)); x(n+1));

for n � 2 and x(i) 2 L�:

De�nition 2. 4. (Deschrijver and Kerre [11]; Deschrijver; Cornelis
and Kerre [12]): A negator on L� is any decreasing mapping N : L� ! L�

satisfying N (0L�) = 1L� and N (1L�) = 0L� : If N (N (x)) = x; for all x 2 L�;
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then N is called an involutive negator. A negator on [0; 1] is a decreasing
mapping N : [0; 1] ! [0; 1] satisfying N(0) = 1 and N(1) = 0: Ns denotes the
standard negator on [0; 1] de�ned as Ns(x) = 1� x for all x 2 [0; 1]:

De�nition 2. 5. Let M; N are fuzzy sets from X2� (0; +1) to [0; 1] such
that M(x; y; t) + N(x; y; t) � 1 for all x; y 2 X and t > 0: The 3-tuple (X;
MM; N ; T ) is said to be a modi�ed intuitionistic fuzzy quasi-metric space if X
is an arbitrary (non-empty) set, T is a continuous t-representable andMM; N

is a mapping X2 � (0; +1) ! L� satisfying the following conditions for every
x; y; z 2 X and t; s > 0 :

(a)MM; N (x; y; t) >L� 0L� ;
(b)MM; N (x; y; t) =MM; N (y; x; t) = 1L� if and only if x = y;
(c)MM; N (x; y; t+ s) �L� T (MM; N (x; z; t);MM; N (z; y; s));

(d)MM; N (x; y; �) : (0; 1)! L� is continuous.
In this caseMM; N is called a modi�ed intuitionistic fuzzy quasi-metric (a

modi�ed ifqm). Here,

MM; N (x; y; t) = (M(x; y; t); N(x; y; t)):

If in additionMM; N satisfyMM; N (x; y; t) =MM; N (y; x; t) for all x; y 2 X
and t > 0; thenMM; N is called modi�ed intuitionistic fuzzy metric on X and
(X;MM; N ; T ) is called a modi�ed intuitionistic fuzzy metric space.

De�nition 2. 6. A modi�ed intuitionistic fuzzy quasi-metric space (X;
MM; N ; T ) is called a non-Archimedean modi�ed intuitionistic fuzzy quasi-
metric space if (MM; N ; T ) is a non-Archimedean modi�ed intuitionistic fuzzy
quasi-metric on X; that is, MM; N (x; y; t) � minfMM; N (x; z; t); MM; N (z;
y; t)g; for all x; y; z 2 X and t > 0:

De�nition 2. 7. Let (X; MM; N ; T ) be a modi�ed intuitionistic fuzzy
quasi-metric space. For t > 0; de�ne the open ball B(x; r; t) with center x 2 X
and radius 0 < r < 1; as

B(x; r; t) = fy 2 X :MM; N (x; y; t) >L� (Ns(r); r)g

A subset A � X is called open if for each x 2 A; there exist t > 0 and 0 < r < 1
such that B(x; r; t) � A: Let �MM; N

denote the family of all open subsets
of X: �MM; N

is called the topology induced by modi�ed intuitionistic fuzzy
quasi-metric.

Remark 2. 1. If (MM; N ; T ) is a modi�ed ifqm on X; then (M�1
M; N ; T ) is

also a modi�ed ifqm on X; whereM�1
M; N is the fuzzy sets in X �X � [0; +1)

de�ned by M�1
M; N (x; y; t) = MM; N (y; x; t): Moreover, if we denote Mi

M; N

the fuzzy sets on X2 � [0; +1) given by Mi
M; N (x; y; t) = minfMM; N (x; y;

t);M�1
M; N (x; y; t)g: Then (Mi

M; N ; T ) is a modi�ed intuitionistic fuzzy metric
on X:
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Example 2. 1. Let (X; d) be a quasi-metric space. Denote T (a; b) = (a1b1;
minfa2 + b2; 1g) for all a = (a1; a2) and b = (b1; b2) 2 L�: Let M and N be
fuzzy sets on X2 � (0; +1) de�ned as follows:

MM; N (x; y; t) = (M(x; y; t); N(x; y; t))

=

�
htn

htn +md(x; y)
;

md(x; y)

htn +md(x; y)

�
;

for all t; h; m; n 2 R+: Then (X;MM; N ; T ) is a modi�ed intuitionistic fuzzy
quasi-metric space.

De�nition 2. 8. (Saadati; Sedghi and Shobe [32]): A sequence (xn)n in
a modi�ed intuitionistic fuzzy metric space (X;MM; N ; T ) is called a Cauchy
sequence if for each 0 < " < 1 and t > 0; there exists n0 2 N such that

MM; N (xn; xm; t) >L� (Ns("); ");

and for each n; m � n0; here Ns is the standard negator. The sequence (xn)n
is said to be convergent to x 2 X in the modi�ed intuitionistic fuzzy metric

space (X; MM; N ; T ) and denoted by xn
MM; N
�����! x; if MM; N (xn; x; t) ! 1L�

whenever n ! 1; for every t > 0: A modi�ed intuitionistic fuzzy metric space
is said to be complete if and only if every Cauchy sequence is convergent.

Lemma 2. 2. (Saadati and Park [33]): LetMM; N be a modi�ed intu-
itionistic fuzzy metric. Then for any t > 0; MM; N (x; y; t) is non-decreasing
with respect to t in (L�; �L�); for all x; y in X:

3 The Banach �xed point theorem in a modi�ed
intuitionistic fuzzy quasi-metric space

De�nition 3. 1. A sequence (xn)n in a modi�ed intuitionistic fuzzy metric
space (X; MM; N ; T ) is said to be G-Cauchy if limn!1MM; N (xn; xn+p;
t) = 1L� for each t > 0 and p 2 N: We say that (X;MM; N ; T ) is G-complete
if every G-Cauchy sequence is convergent.

De�nition 3. 2. A B-contraction on a modi�ed intuitionistic fuzzy metric
space (X; MM; N ; T ) is a self-mapping f on X such that there is a constant
k 2 (0; 1) satisfying

MM; N (f(x); f(y); kt) �L� MM; N (x; y; t); for all x; y 2 X and t > 0:

Generalizing in a natural way the notions of B-contraction, completeness and
G-completeness to modi�ed intuitionistic fuzzy quasi-metric spaces are de�ned
as follows:
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De�nition 3. 3. A sequence (xn)n in a modi�ed intuitionistic fuzzy quasi-
metric space (X; MM; N ; T ) is said to be Cauchy if it is a Cauchy sequence
in the modi�ed intuitionistic fuzzy metric space (X; Mi

M; N ; T ): A modi�ed
intuitionistic fuzzy quasi-metric space (X; MM; N ; T ) is called bicomplete if
the modi�ed intuitionistic fuzzy metric space (X;Mi

M; N ; T ) is complete.

De�nition 3. 4. A sequence (xn)n in a modi�ed intuitionistic fuzzy quasi-
metric space (X;MM; N ; T ) is said to be G-Cauchy if it is a G-Cauchy sequence
in the modi�ed intuitionistic fuzzy metric space (X; Mi

M; N ; T ): A modi�ed
intuitionistic fuzzy quasi-metric space (X; MM; N ; T ) is called G-bicomplete
if the modi�ed intuitionistic fuzzy metric space (X;Mi

M; N ; T ) is G-complete.

De�nition 3. 5. A B-contraction on a modi�ed intuitionistic fuzzy quasi-
metric space (X; MM; N ; T ) is a self-mapping f on X such that there is a
constant k 2 (0; 1) satisfying

MM; N (f(x); f(y); kt) �L� MM; N (x; y; t); for all x; y 2 X and t > 0:

The number k is called a contraction constant of f:

Theorem 3. 1. Let (X;MM; N ; T ) be a G-bicomplete modi�ed intuition-
istic fuzzy quasi-metric space such that limt!1MM; N (x; y; t) = 1L� for all x;
y 2 X: Then every B-contraction on X has a unique �xed point.
Proof. Let f : X ! X be a B-contraction on X with contraction constant

k 2 (0; 1): Then

MM; N (f(x); f(y); kt) �L� MM; N (x; y; t); 8x; y 2 X and t > 0: (3:1)

It immediately follows that

Mi
M; N (f(x); f(y); kt) �L� Mi

M; N (x; y; t); 8x; y 2 X and t > 0: (3:2)

Hence f is a B-contraction on the G-complete modi�ed intuitionistic fuzzy met-
ric space (X;Mi

M; N ; T ): Let x0 2 X and xn = fnx0 (n 2 N): Now, we get

Mi
M; N (xn; xn+1; t) �L� Mi

M; N (x0; x1;
t

kn
); (3:3)

for all n 2 N and t > 0: Thus for any positive integer p; we have by (3:3)

Mi
M; N (xn; xn+p; t) � L�T p�1

0@ Mi
M; N

�
xn; xn+1;

t
p

�
;

:::; Mi
M; N

�
xn+p�1; xn+p;

t
p

� 1A
� L�T p�1

0@ Mi
M; N

�
x0; x1;

t
pkn

�
;

:::; Mi
M; N

�
x0; x1;

t
pkn+p�1

� 1A :
Letting n!1 in the above inequality, we get

lim
n!1

Mi
M; N (xn; xn+p; t) �L� T p�1 (1L� ; :::; 1L�) = 1L� :
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Thus (xn)n is a G-Cauchy sequence in the G-complete modi�ed intuitionistic
fuzzy metric space (X;Mi

M; N ; T ): Thus there exists a point y 2 X such that
xn ! y as n!1: Thus we have

Mi
M; N (fy; y; t) � L�T

�
Mi

M; N

�
fy; fxn;

t

2

�
; Mi

M; N

�
fxn; y;

t

2

��
� L�T

�
Mi

M; N

�
y; xn;

t

2k

�
; Mi

M; N

�
xn+1; y;

t

2

��
:

Letting n!1 in the above inequality, we get

Mi
M; N (fy; y; t) �L� T (1L� ; 1L�) = 1L� :

Thus we get fy = y; that is, y is a �xed point of f: To show uniqueness, assume
fz = z for some z 2 X: Then

Mi
M; N (z; y; t) = Mi

M; N (fz; fy; t)

� L�Mi
M; N

�
z; y;

t

k

�
� L�Mi

M; N

�
fz; fy;

t

k

�
� L�Mi

M; N

�
z; y;

t

k2

�
� L�Mi

M; N

�
fz; fy;

t

k2

�
:::

� L�Mi
M; N

�
z; y;

t

kn

�
! 1L� as n!1:

Thus y = z; that is, f has a unique �xed point.

4 G-bicompleteness in non-Archimedean modi-
�ed intuitionistic fuzzy quasi-metric space

Lemma 4. 1. Each G-Cauchy sequence in a non-Archimedean modi�ed intu-
itionistic fuzzy quasi-metric space is a Cauchy sequence.
Proof. Let (xn)n be a G-Cauchy sequence in the non-Archimedean modi�ed

intuitionistic fuzzy quasi-metric space (X; MM; N ; T ); then it is a G-Cauchy
sequence in the non-Archimedean modi�ed intuitionistic fuzzy metric space (X;
Mi

M; N ; T ): Thus, for each t > 0; we have

lim
n!1

Mi
M; N (xn; xn+1; t) = 1L� ;

which implies that, for each " 2 (0; 1); there is n0 2 N such that

Mi
M; N (xn; xn+1; t) >L� (Ns("); ") for each n � n0:
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Now, let m > n � n0: Then m = n+ j; for some j 2 N: So

Mi
M; N (xn; xm; t)

� L� min

�
Mi

M; N (xn; xn+1; t); Mi
M; N (xn+1; xn+2; t);

:::; Mi
M; N (xn+j�1; xn+j ; t)

�
> L�(Ns("); "):

We conclude that (xn)n is a Cauchy sequence in (X;MM; N ; T ):

Theorem 4. 1. Each bicomplete non-Archimedean modi�ed intuitionistic
fuzzy quasi-metric space is G-bicomplete.
Proof. Let (xn)n be a G-Cauchy sequence in the bicomplete non-Archimedean

modi�ed intuitionistic fuzzy quasi-metric space (X;MM; N ; T ): By Lemma 4.1,
(xn)n is a Cauchy sequence in (X;MM; N ; T ): Hence there is x 2 X such that
limn!1Mi

M; N (x; xn; t) = 1L� ; for all t > 0: We conclude that (X; Mi
M; N ;

T ) is G-complete, that is, (X;MM; N ; T ) is G-bicomplete.

Corollary 4. 2. Each complete non-Archimedean modi�ed intuitionistic
fuzzy metric space is G-complete.

5 Application to the Domain of words

Let � be a non-empty alphabet. Let �1 be the set of all �nite and in�nite
sequences ("words") over �; where we adopt the convention that the empty
sequence � is an element of �1: The symbol v denote the pre�x order on �1;
that is, x v y () x is a pre�x of y: Now, for each x 2 �1; l(x) denote
the length of x: Then l(x) 2 [1; 1) whenever x 6= � and l(�) = 0: For each x;
y 2 �1; let xuy be the common pre�x of x and y: Thus the function dv de�ned
on �1 � �1 by

dv(x; y) =

�
0; if x v y;

2�l (xuy); otherwise,

is a quasi-metric on �1: (We adopt the convention that 2�1 = 0): Actually
dv is a non-Archimedean quasi-metric on �1 and the non-Archimedean quasi-
metric (dv )s is the Baire metric on �1; that is,

(dv)
s(x; x) = 0 and (dv )s(x; y) = 2�l(xuy);

for all x; y 2 �1 such that x 6= y: It is well known that (dv )s is complete.
From this fact it is clear that dv is bicomplete. The quasi-metric dv ; which
was introduced by Smyth [42]; will be called the Baire quasi-metric. Observe
that condition dv (x; y) = 0 can be used to distinguish between the case that
x is a pre�x of y and the remaining cases.

Example 5. 1. Let dv be a (non-Archimedean) quasi-metric on a set X
and letM(M; N)dv

in X �X � [0; 1) given by
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M(M; N)dv
(x; y; t) =

�
t

t+ dv(x; y)
;

dv(x; y)

t+ dv(x; y)

�
; 8x; y 2 X and t > 0:

Then (M(M; N)dv
; T ) is a (non-Archimedean) modi�ed intuitionistic fuzzy

quasi-metric on X; where T denotes the continuous t-representable given by
T = (min; max):

Proposition 5. 1. (�1;M(M; N)dv
; T ) is a G-bicomplete non-Archimedean

intuitionistic fuzzy quasi-metric space.

Consequently, Theorem 3.1 can be applied to this useful space.
Proposition 5. 2. (�1;M(M; N)dvL�

; T ) is a G-bicomplete non-Archimedean
modi�ed intuitionistic fuzzy quasi-metric space. The modi�ed intuitionistic
fuzzy non-Archimedean quasi-metric (M(M; N)dvL�

; T ) is given by
M(M; N)dvL�

(x; y; 0) = 0L� for all x; y 2 �1;
M(M; N)dvL�

(x; y; t) = 1L� if x is a pre�x of y and t > 0;

M(M; N)dvL�
(x; y; t) =

�
1� 2�l(xuy); 2�l(xuy)

�
if x is not a pre�x of y and

t 2 (0; 1);
M(M; N)dvL�

(x; y; t) = 1L� if x is not a pre�x of y and t > 1:
Now we apply any of the Proposition 5.1 and Theorem 3.1 to the complex-

ity analysis of quicksort algorithm, to show, in direct way, the existence and
uniqueness of solution for the following recurrence equation:

T (1) = 0 and T (n) =
2(n� 1)
n

+
n+ 1

n
T (n� 1); n � 2:

The average case analysis of Quicksort is discussed in [22] (see also [15]); where
the above recurrence equation is obtained. Consider as an alphabet � the set of
non-negative real numbers, that is, � = [0;1):We associate to T the functional
� : �1 ! �1 given by

(�(x))1 = T (1) and (�(x))n =
2(n� 1)
n

+
n+ 1

n
xn�1 for all n � 2:

If x 2 �1 has length n < 1; we write x = x1x2x3:::xn; and if x is an in�nite
word we write x = x1x2x3:::
Next we show that � is a B-contraction on the G-bicomplete non-Archimedean

modi�ed intuitionistic fuzzy quasi-metric space (�1;M(M; N)dv
; T ) with con-

traction constant 12 :
To this end, we �rst note that, by construction, we have l(�(x)) = l(x) + 1

for all x 2 �1 (in particular l(�(x)) =1 whenever l(x) =1):
Furthermore, it is clear that

x v y () �(x) v �(y);
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and consequently

�(x u y) v �(x) u �(y) for all x; y 2 �1:

Hence
l(�(x u y)) � l(�(x) u �(y)) for all x; y 2 �1:

From the preceding observations we deduce that for all x; y 2 X; if x is a pre�x
of y; then

M(M; N)dv
(�(x); �(y);

t

2
) =M(M; N)dv

(x; y; t) = 1L� :

and if x is not a pre�x of y; then

M(M; N)dv
(�(x); �(y);

t

2
)

=

� t
2

t
2 + 2

�l(�(x)u�(y)) ;
2�l(�(x)u�(y))

t
2 + 2

�l(�(x)u�(y))

�
� L�

� t
2

t
2 + 2

�l(�(xuy)) ;
2�l(�(xuy))

t
2 + 2

�l(�(xuy))

�
� L�

� t
2

t
2 + 2

�(l(xuy)+1) ;
2�(l(xuy)+1)

t
2 + 2

�(l(xuy)+1)

�
� L�

�
t

t+ 2�l(xuy)
;

2�l(xuy)

t+ 2�l(xuy)

�
� L�M(M; N)dv

(x; y; t);

for all t > 0: Therefore � is a B-contraction on (�1; M(M; N)dv
; T ) with

contraction constant 1
2 : So, by Theorem 3.1, � has a unique �xed point z =

z1z2z3:::; which is obviously the unique solution to the recurrence equation T;
that is, z1 = 0 and zn =

2(n�1)
n + n+1

n zn�1 for all n � 2:

6 Conclusions

We conclude the paper by applying our results to the complexity analysis of
Divide and Conquer algorithm. Recall [10; 34] that Divide and Conquer algo-
rithms solve a problem by recursively splitting it into subproblems each of which
is solved separately by the same algorithm, after which the results are combined
into a solution of the original problem. Thus, the complexity of a Divide and
Conquer algorithm typically is the solution to the recurrence equation given by

T (1) = c and T (n) = aT (
n

b
) + h(n);

where a; b; c 2 N with a; b � 2; n range over the set fbp : p = 0; 1; 2; :::g;
and h(n) � 0 for all n 2 N: As in the case of Quicksort algorithm, take � = [0;

10



1) and put �N = f x 2 �1 : l(x) = 1g: Clearly �N is a closed subset of
(�1; Mi

(M; N)dv
; T ); so (�N ; M(M; N)dv

; T ) is a non-Archimedean modi�ed
intuitionistic G-bicomplete fuzzy quasi-metric space by Proposition 5.1. Now
we associate to T the functional � : �N ! �N given by (�(x))1 = T (1); and

(�(x))n = axn=b + h(n); if n 2 fbp : p = 1; 2; :::g
and (�(x))n = 0 otherwise, for all x 2 �N :

For our purposes here it su¢ ces to observe that for each x; y 2 �N ; the following
inequality holds

l(�(x) u �(y)) � 1 + l(x u y):

In fact, If l(x u y) = 0; then l(�(x) u �(y)) � 1 and if bp > l(x u y) � bp�1;
p � 1; then bp+1 > l(�(x) u �(y)) � bp:
Hence, for each x; y 2 �N and t > 0; we obtain

M(M; N)dv
(�(x); �(y);

t

2
)

=

� t
2

t
2 + 2

�l(�(x)u�(y)) ;
2�l(�(x)u�(y))

t
2 + 2

�l(�(x)u�(y))

�
� L�

� t
2

t
2 + 2

�l(�(xuy)) ;
2�l(�(xuy))

t
2 + 2

�l(�(xuy))

�
� L�

� t
2

t
2 + 2

�(l(xuy)+1) ;
2�(l(xuy)+1)

t
2 + 2

�(l (xuy)+1)

�
� L�

�
t

t+ 2�l(xuy)
;

2�l(xuy)

t+ 2�l(xuy)

�
� L�M(M; N)dv

(x; y; t):

Therefore � is a B-contraction on (�N ; M(M; N)dv
; T ) with contraction con-

stant 12 : So, by Theorem 3.1, � has a unique �xed point z = z1z2z3:::
Consequently, the function F de�ned on fbp : p = 0; 1; 2; :::g by F (bp) = zbp

for all p � 0; is the unique solution to the recurrence equation of the given
Divide and Conquer algorithm.
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