Interval-valued fuzzy quasi-ideals and bi-ideals of semirings

Sukhendu Kar, Sudipta Purkait, K. P. Shum

Received 01 July 2013; Revised 17 July 2013; Accepted 26 July 2013

ABSTRACT. The interval-valued prime fuzzy ideals (in brevity, the i-v. prime fuzzy ideals) of a semigroup have been recently studied by Kar, Sarkar and Shum [18]. As a continued study of i-v fuzzy ideals, we are going to investigate the properties of i-v fuzzy quasi-ideal and i-v fuzzy bi-ideal of a semiring and then we characterize the regularity and intra-regularity of a semiring in terms of the above i-v fuzzy ideals.

2010 AMS Classification: 08A72

Keywords: Semirings, Interval Numbers, i-v Fuzzy Quasi-ideals, i-v Fuzzy Bi-ideals, Regular Semirings, Intra-regular Semirings.

Corresponding Author: Sukhendu Kar (karsukhendu@yahoo.co.in)

1. Introduction

Quasi-ideals of rings and semigroups were introduced and investigated by O. Steinfeld [24], [25], [26]. In 1975, R. A. Good and D. R. Hughes [11] also considered the bi-ideals in semirings. The quasi-ideals are generalization of left ideals and right ideals whereas the bi-ideals are the generalization of quasi-ideals. The properties of fuzzy subquasi semigroup of a quasigroup were investigated by W. A. Dudek in [7]. S. Kar and P. Sarkar considered the fuzzy quasi-ideals and fuzzy bi-ideals of a ternary semigroup in [16].

The notion of i-v fuzzy set was introduced by L. A. Zadeh in 1975 [29]. Later on, I. Grattan-Guinness [12], K. U. Jahn [14] and R. Sambuc [23] studied the i-v fuzzy sets and they regarded this kind of fuzzy sets as a generalization of the ordinary fuzzy set. In fact, i-v fuzzy sets (in short, IVFS) are defined in terms of i-v membership functions.

After the i-v fuzzy sets have been introduced (see [3], [4], [5], [6], [13], [15], [17], [20], [21], [27]), some theories related with i-v fuzzy sets have been developed. There are natural ways to fuzzify various algebraic structures and the approaches
have already been extensively studied in the literature. In particular, A. Rosenfeld [22] studied the fuzzy subgroups in 1971. Also, N. Kuroki in 1979 [19] further mentioned the fuzzy semigroups. In 1993, J. Ahsan, K. Saifullah and M. Farid Khan [1] introduced the fuzzy semirings. Recently, many interesting results of semirings have been obtained and given by using the context of fuzzy sets.

In this paper, we first introduce i-v fuzzy quasi-ideals and i-v fuzzy bi-ideals of a semiring. Then, we proceed to characterize the regular and intra-regular semirings by using the i-v fuzzy quasi-ideals and i-v fuzzy bi-ideals of the semirings. Our study of i-v fuzzy quasi-ideals in this paper is a continued study of our recent work on i-v fuzzy ideals of a semigroup [18].

2. Preliminaries

Definition 2.1. [10] A non-empty set S together with two binary operations ‘$+$’ and ‘\cdot’ is said to be a semiring if (i) $(S, +)$ is an abelian semigroup; (ii) (S, \cdot) is a semigroup and (iii) $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in S$.

Let $(S, +, \cdot)$ be a semiring. If there exists an element ‘0_S’ in S such that $a + 0_S = a$ and $a \cdot 0_S = 0_S = 0_S \cdot a$ for all $a \in S$; then ‘0_S’ is called the zero element of S.

Throughout this paper, we consider a semiring $(S, +, \cdot)$ with a zero element ‘0_S’. Unless otherwise stated, a semiring $(S, +, \cdot)$ will be simply denoted by S and the multiplication ‘\cdot’ will be denoted by juxtaposition. In this paper, by the product AB of two subsets A and B of a semiring S, we mean the finite sum $\sum_{i=1}^{n} a_i b_i$, for some $a_i \in A$, $b_i \in B$ and $n \in \mathbb{Z}^+$.

Definition 2.2. [15] An interval number on $[0, 1]$, denoted by \tilde{a}, is defined as the closed subinterval of $[0, 1]$, where $\tilde{a} = [a^-, a^+]$ satisfying $0 \leq a^- \leq a^+ \leq 1$.

For any two interval numbers $\tilde{a} = [a^-, a^+]$ and $\tilde{b} = [b^-, b^+]$, we define the followings:

(i) $\tilde{a} \leq \tilde{b}$ if and only if $a^- \leq b^-$ and $a^+ \leq b^+$.
(ii) $\tilde{a} = \tilde{b}$ if and only if $a^- = b^-$ and $a^+ = b^+$.
(iii) $\tilde{a} < \tilde{b}$ if and only if $\tilde{a} \neq \tilde{b}$ and $\tilde{a} \leq \tilde{b}$.

Note 2.3. We write $\tilde{a} \geq \tilde{b}$ whenever $\tilde{b} \leq \tilde{a}$ and $\tilde{a} > \tilde{b}$ whenever $\tilde{b} < \tilde{a}$.

We denote the interval number $[0, 0]$ by $\tilde{0}$ and $[1, 1]$ by $\tilde{1}$.

Definition 2.4. [6] Let $\{\tilde{a}_i : i \in \Lambda\}$ be a family of interval numbers, where $\tilde{a}_i = [a_i^-, a_i^+]$. Then we define $\sup\{\tilde{a}_i\} = [\sup_{i \in \Lambda} a_i^-, \sup_{i \in \Lambda} a_i^+]$ and $\inf\{\tilde{a}_i\} = [\inf_{i \in \Lambda} a_i^-, \inf_{i \in \Lambda} a_i^+]$.

We denote the set of all interval numbers on $[0, 1]$ by $D[0, 1]$.

Let us recall the following known definitions.

Definition 2.5. [28] Let S be a non-empty set. Then a mapping $\mu : S \rightarrow [0, 1]$ is called a fuzzy subset of S.

2
Lemma 2.14. Then we define their intersection and union by
\[\mu^{-}(x), \mu^{+}(x) \] for all \(x \in S \), for any i-v fuzzy subset \(\mu \) of a non-empty set \(S \), where \(\mu^{-} \) and \(\mu^{+} \) are some fuzzy subsets of \(S \).

We state below several definitions which will be useful in further study of this paper.

Definition 2.8. Let \(\mu_{1} \) and \(\mu_{2} \) be two i-v fuzzy subsets of a set \(X \neq \emptyset \). Then \(\mu_{1} \) is said to be subset of \(\mu_{2} \), denoted by \(\mu_{1} \subseteq \mu_{2} \) if \(\mu_{1}(x) \leq \mu_{2}(x) \) i.e. \(\mu_{1}(x) \leq \mu_{2}(x) \) and \(\mu_{1}^{+}(x) \leq \mu_{2}^{+}(x) \), for all \(x \in X \) where \(\mu_{1}(x) = [\mu_{1}^{-}(x), \mu_{1}^{+}(x)] \) and \(\mu_{2}(x) = [\mu_{2}^{-}(x), \mu_{2}^{+}(x)] \).

Definition 2.9. The interval Min-norm is a function \(\text{Min}^{i} : D(0, 1] \times D(0, 1] \rightarrow D(0, 1] \), defined by:
\[
\text{Min}^{i}(\tilde{a}, \tilde{b}) = [\text{min}(a^{-}, b^{-}), \text{min}(a^{+}, b^{+})] \quad \text{for all} \quad \tilde{a}, \tilde{b} \in D(0, 1], \quad \text{where} \quad \tilde{a} = [a^{-}, a^{+}] \quad \text{and} \quad \tilde{b} = [b^{-}, b^{+}].
\]

Definition 2.10. The interval Max-norm is a function \(\text{Max}^{i} : D(0, 1] \times D(0, 1] \rightarrow D(0, 1] \), defined by:
\[
\text{Max}^{i}(\tilde{a}, \tilde{b}) = [\text{max}(a^{-}, b^{-}), \text{max}(a^{+}, b^{+})] \quad \text{for all} \quad \tilde{a}, \tilde{b} \in D(0, 1], \quad \text{where} \quad \tilde{a} = [a^{-}, a^{+}] \quad \text{and} \quad \tilde{b} = [b^{-}, b^{+}].
\]

Definition 2.11. Let \(X \neq \emptyset \) be a set and \(A \subseteq X \). Then the i-v characteristic function \(\tilde{\chi}_{A} \) of \(A \) is an i-v fuzzy subset of \(S \) which is defined as follows:
\[
\tilde{\chi}_{A}(x) = \begin{cases}
1 & \text{when} \quad x \in A, \\
0 & \text{when} \quad x \notin A.
\end{cases}
\]

Definition 2.12. Let \(\tilde{\mu}_{1} \) and \(\tilde{\mu}_{2} \) be two i-v fuzzy subsets of a non-empty set \(X \). Then we define their intersection and union by \((\tilde{\mu}_{1} \cap \tilde{\mu}_{2})(x) = \text{Min}^{i}(\tilde{\mu}_{1}(x), \tilde{\mu}_{2}(x)) \) and \((\tilde{\mu}_{1} \cup \tilde{\mu}_{2})(x) = \text{Max}^{i}(\tilde{\mu}_{1}(x), \tilde{\mu}_{2}(x)) \) for all \(x \in X \).

The following results can be easily observed.

Lemma 2.13. Let \(S \) be a non-empty set and \(A, B \) be two subsets of \(S \). Then \(\tilde{\chi}_{A \cup B} = \tilde{\chi}_{A} \vee \tilde{\chi}_{B} \) and \(\tilde{\chi}_{A \cap B} = \tilde{\chi}_{A} \wedge \tilde{\chi}_{B} \).

Lemma 2.14. Let \(A \) and \(B \) be two non-empty subsets of a semiring \(S \). Then \(\tilde{\chi}_{A} \tilde{\chi}_{B} = \tilde{\chi}_{A \wedge B} \).

We first state the definition of a fuzzy point in a semiring.

Definition 2.15. Let \(S \) be a semiring and \(x \in S \). Let \(\tilde{a} \in D(0, 1] \setminus \{1\} \). Then an i-v fuzzy subset \(x\tilde{a} \) of \(S \) is called an i-v fuzzy point of \(S \) if
\[
x\tilde{a}(y) = \begin{cases}
\tilde{a} & \text{if} \quad x = y, \\
0 & \text{otherwise}.
\end{cases}
\]

We now state the definitions of i-v fuzzy left(right) ideals of a semiring.

Definition 2.16. Let \(\tilde{\mu} \) be a non-empty i-v fuzzy subset of a semiring \(S \) (i.e. \(\tilde{\mu}(x) \neq 0 \) for some \(x \in S \)). Then \(\tilde{\mu} \) is called an i-v fuzzy left (resp. i-v fuzzy right) ideal of \(S \) if the following conditions hold.
Deﬁnition 3.1. Their product, denoted by \(i-v \) fuzzy quasi-ideal of \(S \), is a non-empty \(i-v \) fuzzy subset of \(S \) which is an \(i-v \) fuzzy left ideal as well as an \(i-v \) fuzzy right ideal of \(S \).

Deﬁnition 2.17. \([9]\) Let \(\tilde{\mu}_1 \) and \(\tilde{\mu}_2 \) be two \(i-v \) fuzzy subsets of a semiring \(S \). Then their product, denoted by \(\tilde{\mu}_1 \tilde{\mu}_2 \), is deﬁned by :

\[
(\tilde{\mu}_1 \tilde{\mu}_2)(x) = \left\{ \begin{aligned}
\sup \left\{ \inf_{1 \leq i \leq n} \left\{ \text{Min}^i(\tilde{\mu}_1(u_i), \tilde{\mu}_2(v_i)) \right\} : x = \sum_{i=1}^{n} u_i v_i; \\
\text{for any } u_i, v_i \in S, n \in \mathbb{Z}^+; \\
\hat{0} \quad \text{if } x \text{ cannot be expressed as } x = \sum_{i=1}^{n} u_i v_i;
\end{aligned} \right.
\]

Throughout this paper, we assume that any two interval numbers in \(D[0, 1] \) are comparable, i.e. for any two interval numbers \(\tilde{a} \) and \(\tilde{b} \) in \(D[0, 1] \), we have either \(\tilde{a} \leq \tilde{b} \) or \(\tilde{a} > \tilde{b} \).

3. \(i-v \) Fuzzy Quasi-ideals of a Semiring

We begin with the following deﬁnition of \(i-v \) fuzzy quasi-ideal of a semiring. Some properties of the quasi subsemigroups of a quasigroup have already been studied in \([7]\).

Deﬁnition 3.1. A non-empty \(i-v \) fuzzy subset \(\tilde{\mu} \) of a semiring \(S \) is said to be an \(i-v \) fuzzy quasi-ideal of \(S \) if for any \(x, y \in S \), \(\tilde{\mu}(x + y) \geq \text{Min}^i(\tilde{\mu}(x), \tilde{\mu}(y)) \) and \(\tilde{\mu}X \subseteq \tilde{\mu} \).

Lemma 3.2. For any three \(i-v \) fuzzy subsets \(\tilde{\mu}_1, \tilde{\mu}_2, \tilde{\mu}_3 \) of a semiring \(S \), we have the following properties :

(i) \(\tilde{\mu}_1 (\tilde{\mu}_2 \cup \tilde{\mu}_3) = (\tilde{\mu}_1 \tilde{\mu}_2) \cup (\tilde{\mu}_1 \tilde{\mu}_3); \quad (\tilde{\mu}_2 \cup \tilde{\mu}_3) \tilde{\mu}_1 = (\tilde{\mu}_2 \tilde{\mu}_1) \cup (\tilde{\mu}_3 \tilde{\mu}_1) \)

(ii) \(\tilde{\mu}_1 (\tilde{\mu}_2 \cap \tilde{\mu}_3) \subseteq (\tilde{\mu}_1 \tilde{\mu}_2) \cap (\tilde{\mu}_1 \tilde{\mu}_3); \quad (\tilde{\mu}_2 \cap \tilde{\mu}_3) \tilde{\mu}_1 \subseteq (\tilde{\mu}_2 \tilde{\mu}_1) \cap (\tilde{\mu}_3 \tilde{\mu}_1). \)

Lemma 3.3. A non-empty subset \(A \) of a semiring \(S \) is a quasi-ideal of \(S \) if and only if \(\tilde{\chi}_A \) is an \(i-v \) fuzzy quasi-ideal of \(S \).

Lemma 3.4. Let \(S \) be a semiring. Then the following statements hold.

(i) Every \(i-v \) fuzzy left (or right) ideal of \(S \) is an \(i-v \) fuzzy quasi-ideal of \(S \).

(ii) The intersection of an \(i-v \) fuzzy left ideal and an \(i-v \) fuzzy right ideal of \(S \) is an \(i-v \) fuzzy quasi-ideal of \(S \).

(iii) If \(\tilde{\mu} \) be a non-empty \(i-v \) fuzzy subset of \(S \), then \(\tilde{\chi}_S \tilde{\mu} \) is an \(i-v \) fuzzy left ideal, \(\tilde{\mu}X \) is an \(i-v \) fuzzy right ideal, \(\tilde{\mu}X \tilde{\chi}_S \) is an \(i-v \) fuzzy ideal and \(\tilde{\chi}_S \tilde{\mu} \cap \tilde{\mu}X \) is an \(i-v \) fuzzy quasi-ideal of \(S \).
Note 3.5. It can be easily seen that each i-v fuzzy left ideal or an i-v fuzzy right ideal of a semiring \(S \) is an i-v fuzzy quasi-ideal of \(S \). But the converse is in general not true. We have the following example.

Example 3.6. We consider the semiring \(S = M_2(\mathbb{N}_0) \) with respect to the usual addition and multiplication of matrices. Suppose that \(P \) is the set
\[
P = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{N}_0) \right\}.
\]
Now we define an i-v fuzzy subset
\[
\tilde{\mu} : M_2(\mathbb{N}_0) \to [0, 1]
\]
by
\[
\tilde{\mu}(A) = \begin{cases} [0.8, 0.9] & \text{when } A \in P; \\ [0.3, 0.4] & \text{otherwise}. \end{cases}
\]
We can easily check that \(\tilde{\mu} \) is an i-v fuzzy quasi-ideal of \(S \) but is not an i-v fuzzy left ideal and an i-v fuzzy right ideal of \(S \) either.

We state the following proposition concerning the i-v fuzzy quasi-ideals of a semiring.

Proposition 3.7. Let \(x \tilde{\mu} \) and \(y \tilde{\theta} \) be two idempotent i-v fuzzy points of a semiring \(S \). Also let \(\tilde{\mu} \) and \(\tilde{\theta} \) be an i-v fuzzy left ideal and i-v fuzzy right ideal of \(S \), respectively. Then, we deduce the following equalities:
\[
x \tilde{\mu} = x \tilde{\tilde{\mu}} \tilde{\tilde{\theta}} = \tilde{\tilde{\mu}} \tilde{\tilde{\theta}} x \tilde{\tilde{\mu}} = x \tilde{\tilde{\mu}} \tilde{\tilde{\theta}} x \tilde{\tilde{\mu}} \tilde{\tilde{\theta}} = x \tilde{\tilde{\mu}} \tilde{\tilde{\theta}} x \tilde{\tilde{\mu}} \tilde{\tilde{\theta}} \]
and so each of these i-v fuzzy subsets is an i-v fuzzy quasi-ideal of \(S \).

Proof. We first prove that \(x \tilde{\mu} = x \tilde{\tilde{\mu}} \tilde{\tilde{\theta}} \). Clearly, \(x \tilde{\tilde{\mu}} \subseteq x \tilde{\tilde{\mu}} \). Also since \(\tilde{\mu} \) is an i-v fuzzy left ideal of \(S \), we have \(x \tilde{\tilde{\mu}} \subseteq x \tilde{\tilde{\mu}} \). It hence follows that \(x \tilde{\mu} = x \tilde{\tilde{\mu}} \).

For the reverse inclusion, we let \(y \in S \). Then, we have
\[
(x \tilde{\mu} x \tilde{\mu})(y) = \sup_{y = \sum_{i=1}^{m} p_i q_i} \inf_{1 \leq i \leq m} \{ \text{Min}^i(x \tilde{\mu} (p_i), x \tilde{\mu} (q_i)) \}.
\]
If \((x \tilde{\mu} x \tilde{\mu})(y) = \tilde{a} \), then
\[
\inf_{1 \leq i \leq m} \{ \text{Min}^i(x \tilde{\mu} (p_i), x \tilde{\mu} (q_i)) \} = \tilde{a}.
\]

\[
\implies \text{Min}^i(x \tilde{\mu} (p_i), x \tilde{\mu} (q_i)) = \tilde{a} \quad \text{for each } 1 \leq i \leq m, \text{ where } y = \sum_{i=1}^{m} p_i q_i.
\]
\[
\implies p_i = x = q_i \quad \text{for each } 1 \leq i \leq m, \text{ where } y = \sum_{i=1}^{m} p_i q_i.
\]

Now \(x \tilde{\mu} (y) = (x \tilde{\mu} x \tilde{\mu})(y) \) implies that \(y = x \). Hence, we have \(x = \sum_{i=1}^{m} p_i q_i \). Thus we get \(x = \sum_{i=1}^{m} x^2 \). Let \(z \in S \). Then \((x \tilde{\mu} x \tilde{\mu})(z) = \text{Min}^i \left((x \tilde{\mu} x \tilde{\mu})(z), \tilde{\mu}(z) \right) \). Let \(T \) be
the set
\[T = \left\{ \sum_{i=1}^{n} a_i b_i : a_i, b_i \in S; n \in \mathbb{N} \right\} \]

Case I: If \(z \notin T \), then \((x_{\bar{a}S})_\cap \mu)(z) = 0 \). Therefore, \((x_{\bar{a}S} \cap \mu)(z) = 0 \) and also \((x_{\bar{a}S})(z) = 0 \).

Case II: Let \(z \in T \). Then, we have
\[
(x_{\bar{a}S} \cap \mu)(z) = \text{Min}^\dagger \left(\sup_{z = \sum_{i=1}^{n} a_i b_i} \left\{ \inf_{1 \leq i \leq n} \text{Min}^\dagger (x_{\bar{a}S}(a_i), \bar{S}(b_i)) \right\}, \mu(z) \right)
\]
\[
= \text{Min}^\dagger \left(\sup_{z = \sum_{i=1}^{n} a_i b_i} \left\{ \inf_{1 \leq i \leq n} \{x_{\bar{a}}(a_i)\} \right\}, \mu(z) \right).
\]

Now, let \(T_1 \) be the set \(T_1 = \left\{ \sum_{i=1}^{n} a_i b_i \in T : a_i = x \text{ for all } 1 \leq i \leq n \right\} \). If \(z \in T_1 \), then \((x_{\bar{a}S} \cap \mu)(z) = \text{Min}^\dagger((\bar{a}, \mu(z))). \) Again, \(z \in T_1 \Rightarrow z = \sum_{i=1}^{n} x b_i = x \sum_{i=1}^{n} b_i = (\sum_{i=1}^{m} x^2) \sum_{i=1}^{n} b_i = \sum_{i=1}^{m} x (\sum_{i=1}^{n} b_i). \) Therefore,
\[
(x_{\bar{a}S})(z) = \inf_{1 \leq i \leq m} \left\{ \text{Min}^\dagger(x_{\bar{a}}(x), \mu(\sum_{i=1}^{n} x b_i)) \right\}
\]
\[
= \inf_{1 \leq i \leq m} \left\{ \text{Min}^\dagger((\bar{a}, \mu(z))) \right\} = \text{Min}^\dagger((\bar{a}, \mu(z)) = (x_{\bar{a}S} \cap \mu)(z).
\]

If \(z \in T \setminus T_1 \), then \((x_{\bar{a}S} \cap \mu)(z) = 0 = (x_{\bar{a}S})(z) \). Thus we get \(x_{\bar{a}S} \cap \mu \subseteq x_{\bar{a}S} \mu \). Consequently, \(x_{\bar{a}S} = x_{\bar{a}S} \cap \mu \).

Again, we see that \(x_{\bar{a}S} \) is an intersection of an i-v fuzzy left ideal and an i-v fuzzy right ideal of \(S \). Hence \(x_{\bar{a}S} \mu \) is an i-v fuzzy quasi-ideal of \(S \), by Lemma 3.4 (ii).

Similarly, we can prove that \(\tilde{\theta} y_{\tilde{b}} = \tilde{\chi}_S y_{\tilde{b}} \cap \tilde{\theta} \) and \(\tilde{\theta} y_{\tilde{b}} \) is an i-v fuzzy quasi-ideal of \(S \), where \(\tilde{\theta} \) is an i-v fuzzy right ideal of \(S \) and \(y_{\tilde{b}} \) is an idempotent i-v fuzzy point of \(S \).

Now, \(x_{\bar{a}S} \chi_S y_{\tilde{b}} \subseteq x_{\bar{a}S} \tilde{\chi}_S \chi_S \chi_S \subseteq x_{\bar{a}S} \chi_S \). Also, \(x_{\bar{a}S} \chi_S y_{\tilde{b}} \subseteq \tilde{\chi}_S \chi_S y_{\tilde{b}} \subseteq \chi_S y_{\tilde{b}} \). This implies that \(x_{\bar{a}S} \chi_S y_{\tilde{b}} \subseteq x_{\bar{a}S} \chi_S \cap \tilde{\chi}_S \chi_S y_{\tilde{b}} \). To prove the reverse inclusion, let \(t \in S \). Since, \(x_{\bar{a}} \) and \(y_{\tilde{b}} \) are both idempotent, we have \(x = \sum_{i=1}^{m_1} x^2 \) and \(y = \sum_{j=1}^{m_2} y^2 \) for some \(m_1, m_2 \in \mathbb{N} \). If \(t \) can not be expressed as \(t = \sum_{i=1}^{m} a_i b_i \), for any \(a_i, b_i \in S \), then
\[(x_{\overline{a}}\overline{\chi}_S \cap \overline{\chi}y_g)(t) = \tilde{0} = (x_{\overline{a}}\overline{\chi}y_g)(t).\]

Now, suppose that \(t = \sum_{i=1}^{n_1} a_i b_i \), for some \(a_i, b_i \in S \). Then

\[
(x_{\overline{a}}\overline{\chi}_S \cap \overline{\chi}y_g)(t) = \text{Min}^t \left((x_{\overline{a}}\overline{\chi}_S)(t), (\overline{\chi}y_g)(t) \right) = \text{Min}^t \left(\sup_{n_1} \left\{ \inf_{1 \leq i \leq n_1} \left\{ \text{Min}^t(x_{\overline{a}}(a_i), \overline{\chi}_S(b_i)) \right\} \right\}, \sup_{t = \sum_{i=1}^{n_1} a_i b_i} \left\{ \inf_{1 \leq i \leq n_1} \left\{ \text{Min}^t(\overline{\chi}_S(a_i), y_g(b_i)) \right\} \right\} \right),
\]

Now if \(a_i = x \) and \(b_i = y \) for each \(1 \leq i \leq n_1 \), then

\[
(x_{\overline{a}}\overline{\chi}_S \cap \overline{\chi}y_g)(t) = \text{Min}^t \left(\inf_{1 \leq i \leq n_1} \{ x_{\overline{a}}(x) \}, \inf_{1 \leq i \leq n_2} \{ y_g(y) \} \right) = \text{Min}^t(\overline{a}, \overline{b}). \]

Again, \(a_i = x \) and \(b_i = y \) for each \(1 \leq i \leq n_1 \) implies that \(t = \sum_{i=1}^{n_1} xy = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} x^2 y^2 \). Then, we deduce that

\[
(x_{\overline{a}}\overline{\chi}_S y_g)(t) = \sup_{k \leq i \leq k} \left\{ \inf_{1 \leq i \leq k} \left\{ \text{Min}^t(x_{\overline{a}}\overline{\chi}_S)(a_i), y_g(b_i) \right\} \right\},
\]

\[
\geq \inf_{1 \leq i \leq n_1} \left\{ \text{Min}^t((x_{\overline{a}}\overline{\chi}_S)(\sum_{i=1}^{n_1} x^2), y_g(\sum_{j=1}^{n_2} y^2)) \right\},
\]

\[
\geq \inf_{1 \leq i \leq n_1} \left\{ \text{Min}^t(\inf_{1 \leq i \leq n_1} \text{Min}^t(x_{\overline{a}}(x), \overline{\chi}_S(x)), y_g(y)) \right\}
\]

\[
= \text{Min}^t(\overline{a}, \overline{b}) = (x_{\overline{a}}\overline{\chi}_S \cap \overline{\chi}y_g)(t).
\]

Now let us consider the case where \(a_i \neq x \) or \(b_i \neq y \) for some \(1 \leq i \leq n_1 \). Then

\[
(x_{\overline{a}}\overline{\chi}_S \cap \overline{\chi}y_g)(t) = \text{Min}^t \left(\sup_{n_1} \left\{ \inf_{1 \leq i \leq n_1} \{ x_{\overline{a}}(a_i) \} \right\}, \sup_{t = \sum_{i=1}^{n_1} a_i b_i} \left\{ \inf_{1 \leq i \leq n_1} \{ y_g(b_i) \} \right\} \right),
\]

\[
= \tilde{0} = (x_{\overline{a}}\overline{\chi}y_g)(t).
\]
This implies that \((x_\tilde{n} \tilde{\chi}_S \cap \tilde{\chi}_S y_\tilde{r}) \subseteq (x_\tilde{n} \tilde{\chi}_S y_\tilde{r})\). Consequently, we get that \((x_\tilde{n} \tilde{\chi}_S \cap \tilde{\chi}_S y_\tilde{r}) = x_\tilde{n} \tilde{\chi}_S y_\tilde{r}\). Being an intersection of i-v fuzzy left ideal and i-v fuzzy right ideal, \(x_\tilde{n} \tilde{\chi}_S y_\tilde{r}\) is an i-v fuzzy quasi-ideal of \(S\).

Definition 3.8. Let \(\tilde{\mu}\) be a non-empty i-v fuzzy subset of a semiring \(S\). The intersection of all i-v fuzzy left ideals of \(S\) containing \(\tilde{\mu}\) is said to be the i-v fuzzy left ideal of \(S\) generated by \(\tilde{\mu}\) and it is denoted by \((\tilde{\mu})_l\). The i-v fuzzy right ideal \((\tilde{\mu})_r\), and i-v fuzzy quasi-ideal \((\tilde{\mu})_q\) of \(S\), generated by \(\tilde{\mu}\) can be defined similarly.

Definition 3.9. Let \(\tilde{\mu}\) be an i-v fuzzy subset of a semiring \(S\). We define an i-v fuzzy subset \(< \tilde{\mu}> \) of \(S\) by \(< \tilde{\mu}> (x) = \sup \left\{ \inf_{1 \leq i \leq n} \tilde{\mu}(a_i) : x = \sum_{i=1}^{n} a_i, a_i \in S; n \in \mathbb{N} \right\}\), for all \(x \in S\).

Lemma 3.10. Let \(\tilde{\mu}\) be a non-empty i-v fuzzy subset of a semiring \(S\). Then

(i) \((\tilde{\mu})_l = < \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} >\), (ii) \((\tilde{\mu})_r = < \tilde{\mu} \cup \tilde{\mu} \tilde{\chi}_S > \) and (iii) \((\tilde{\mu})_q = < \tilde{\mu} \cup (\tilde{\mu} \tilde{\chi}_S \cap \tilde{\chi}_S \tilde{\mu}) >\).

Proof. (i) We first prove that \(< \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} >\) is an i-v fuzzy left ideal of \(S\) containing \(\tilde{\mu}\). Let \(x = \sum_{i=1}^{m} a_i\) and \(y = \sum_{j=1}^{n} b_j\) for some \(a_i, b_j \in S\), where \(1 \leq i \leq m\) and \(1 \leq j \leq n\). Then

\[
< \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} > (x + y) = \sup \left\{ \inf_{1 \leq i \leq m} \left(\tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} \right)(c_i) : x + y = \sum_{i=1}^{m} c_i \right\}
\]

\[
\geq \sup \left\{ Min \left\{ \inf_{1 \leq i \leq m} \left(\tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} \right)(a_i), \inf_{1 \leq j \leq n} \left(\tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} \right)(b_j) \right\} : x = \sum_{i=1}^{m} a_i, y = \sum_{j=1}^{n} b_j \right\}
\]

\[
\geq Min \left\{ < \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} > (x), < \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} > (y) \right\}.
\]

Now \(\tilde{\chi}_S \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} = \tilde{\chi}_S \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} \subseteq \tilde{\chi}_S \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} = \tilde{\chi}_S \tilde{\mu} \subseteq \tilde{\chi}_S \tilde{\mu} \cup \tilde{\mu}\). This implies that \(< \tilde{\chi}_S \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} > \subseteq < \tilde{\chi}_S \tilde{\mu} \cup \tilde{\mu}\). Therefore, \(< \tilde{\chi}_S \tilde{\mu} \cup \tilde{\mu}\) is an i-v fuzzy left ideal of \(S\) and clearly, it contains \(\tilde{\mu}\). Let \(z \in S\) and IFL(S) be the set of all i-v fuzzy left ideals of \(S\). Then \((\tilde{\mu})_l(z) = \left(\cap_{\tilde{\mu} \in IFL(S)} \tilde{\mu} \right)(z) = \inf_{\tilde{\mu} \in IFL(S)} \tilde{\mu}(z) \leq \tilde{\chi}_S \tilde{\mu} \cup \tilde{\mu} > (z),\)

since \(< \tilde{\chi}_S \tilde{\mu} \cup \tilde{\mu}\) is an i-v fuzzy left ideal of \(S\) containing \(\tilde{\mu}\). Thus we obtain that \((\tilde{\mu})_l(z) \subseteq < \tilde{\chi}_S \tilde{\mu} \cup \tilde{\mu}\). Again \((\tilde{\mu})_r(z) = \left(\cap_{\tilde{\nu} \in IFL(S)} \tilde{\nu} \right)(z) = \inf_{\tilde{\nu} \in IFL(S)} \tilde{\nu}(z) \geq \inf_{\tilde{\mu} \in IFL(S)} \tilde{\mu}(z) = \tilde{\mu}(z),\)

Also, \((\tilde{\nu})_l(z) = \left(\cap_{\tilde{\mu} \in IFL(S)} \tilde{\mu} \right)(z) = \inf_{\tilde{\mu} \in IFL(S)} \tilde{\mu}(z) \geq \inf_{\tilde{\nu} \in IFL(S)} \tilde{\nu}(z) = \tilde{\nu}(z).\)

This shows that \((\tilde{\mu})_l(z) \geq Max \left\{ (\tilde{\mu})_l(z), (\tilde{\nu})_r(z) \right\} = (\tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu})(z)\.\) Therefore \((\tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu}\) \subseteq \((\tilde{\mu})_l\) which implies that \(< \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} > \subseteq < \tilde{\mu} > = (\tilde{\mu})_l.\) Hence, we get that \((\tilde{\mu})_l = < \tilde{\mu} \cup \tilde{\chi}_S \tilde{\mu} > .\)
Theorem 3.14. \(S \)

Theorem 3.13. \(S \)

\((ii) \) Proof of this part is similar to \((i)\).

\((iii) \) We first prove \(\tilde{\mu} \cap (\tilde{\mu} \cap \tilde{\chi} S \tilde{\mu}) \) is an i-v fuzzy quasi-ideal of \(S \) containing \(\tilde{\mu} \). We have \(\tilde{\mu} \cap (\tilde{\mu} \cap \tilde{\chi} S \tilde{\mu}) = (\tilde{\mu} \cap \tilde{\chi} S \tilde{\mu}) \cap (\tilde{\mu} \cap \tilde{\chi} S \tilde{\mu}) \). Now, \(\tilde{\mu} \) and \(\tilde{\chi} S \tilde{\mu} \) are i-v fuzzy left ideal and i-v fuzzy right ideal of \(S \) containing \(\tilde{\mu} \) respectively. Therefore, \(\tilde{\mu} \) is an intersection of i-v fuzzy left ideal and i-v fuzzy right ideal of \(S \) respectively and clearly, it contains \(\tilde{\mu} \). Thus, \(\tilde{\mu} \cup (\tilde{\mu} \cap \tilde{\chi} S \tilde{\mu}) \) is an i-v fuzzy quasi-ideal of \(S \) containing \(\tilde{\mu} \).

The following theorem is known in regular semirings.

For each i-v fuzzy right ideal \(\tilde{\mu} \) and i-v fuzzy quasi-ideal \(\tilde{\mu} \), there exists an element \(x \in S \) such that \(a = axa \). A semiring \(S \) is said to be regular if its every element is regular.

The following theorem is known in regular semirings.

Theorem 3.12. \(S \) is regular if and only if \(\tilde{\mu} \cap \tilde{\chi} S \tilde{\mu} \) and \(\tilde{\mu} \) are i-v fuzzy quasi-ideals of \(S \) containing \(\tilde{\mu} \).

Theorem 3.13. The following statements are equivalent in a semiring \(S \).

1. \(S \) is regular.
2. For each i-v fuzzy right ideal \(\tilde{\mu} \) and i-v fuzzy left ideal \(\tilde{\chi} S \tilde{\mu} \) of \(S \), \(\tilde{\mu} = \tilde{\mu} \cap \tilde{\chi} S \tilde{\mu} \).
3. For each i-v fuzzy right ideal \(\tilde{\mu} \) and each i-v fuzzy left ideal \(\tilde{\chi} S \tilde{\mu} \) of \(S \), \(a \) is the i-v fuzzy quasi-ideal of \(S \).
4. The set \(IFQ(S) \) of all i-v fuzzy quasi-ideals of \(S \) forms a regular semigroup with respect to the usual product of i-v fuzzy subsets of \(S \).
5. Each i-v fuzzy quasi-ideal \(\tilde{\mu} \) of \(S \) satisfies \(\tilde{\mu} = \tilde{\mu} \cap \tilde{\chi} S \tilde{\mu} \).

The proof of this theorem is straightforward. We hence omit the proof.

In the following theorem, we study the type of i-v fuzzy quasi-ideals in a regular semiring \(S \).

Theorem 3.14. The following statements are equivalent in a semiring \(S \).

1. \(\tilde{\mu} \cap \tilde{\chi} S \tilde{\mu} \) for any i-v fuzzy right ideal \(\tilde{\mu} \) and i-v fuzzy quasi-ideal \(\tilde{\chi} S \tilde{\mu} \) of \(S \).
2. \(IFQ(S) \) forms an idempotent semigroup with respect to the usual product of i-v fuzzy subsets of \(S \).
3. \(\tilde{\mu} = \tilde{\mu} \cap \tilde{\chi} S \tilde{\mu} \) for any i-v fuzzy quasi-ideal \(\tilde{\mu} \) of \(S \).
Proof. (i) \implies (ii) : Suppose that (i) hold. Then it follows from Theorem 3.13 that $IFQ(S)$ forms a regular semigroup with respect to the usual product of the i-v fuzzy subsets of S. It remains to prove that $IFQ(S)$ is idempotent. Let $\tilde{\eta} \in IFQ(S)$. Then, by Theorem 3.13, we get that $\tilde{\eta} = \tilde{\eta} \tilde{\eta} \tilde{\eta}$. Thus, we obtain that :

$$
\tilde{\eta} = \tilde{\eta} \tilde{x} s \tilde{\eta} = (\tilde{\eta} \tilde{x} s \tilde{\eta}) \tilde{x} s (\tilde{\eta} \tilde{x} s \tilde{\eta}) = \tilde{\eta} \tilde{x} s (\tilde{\eta} \tilde{x} s \tilde{\eta}) \tilde{x} s \tilde{\eta} \tilde{x} s \tilde{\eta} = \tilde{\eta} \tilde{x} s \tilde{\eta} \tilde{x} s \tilde{\eta} = \tilde{\eta} \tilde{x} s \tilde{\eta} \tilde{x} s \tilde{\eta} \tilde{x} s \tilde{\eta} = \tilde{\eta}^2.
$$

This shows that $\tilde{\eta} \subseteq \tilde{\eta}^2$. Now $\tilde{\eta}^2 \subseteq \tilde{x} s \tilde{\eta}$ and as well as $\tilde{\eta}^2 \subseteq \tilde{x} s \tilde{\eta}$ imply that $\tilde{\eta}^2 \subseteq \tilde{x} s \tilde{\eta} \cap \tilde{x} s \tilde{\eta} \subseteq \tilde{\eta}$, since $\tilde{\eta}$ is an i-v fuzzy quasi-ideal of S. Hence $\tilde{\eta} = \tilde{\eta}^2$. Thus $IFQ(S)$ forms an idempotent semigroup with respect to the usual product of i-v fuzzy subsets of S.

(ii) \implies (iii) : This is just a restriction.

(iii) \implies (i) : Let $\tilde{\eta} = \tilde{\eta}^2$ for any i-v fuzzy quasi-ideal $\tilde{\eta}$ of S. Let $\tilde{\mu}$ and $\tilde{\theta}$ be an i-v fuzzy right ideal and an i-v fuzzy left ideal of S respectively. Then $\tilde{\mu} \tilde{\theta} \subseteq \tilde{\mu} \tilde{x} s \tilde{\theta} \subseteq \tilde{\mu}$ as well as, $\tilde{\mu} \tilde{\theta} \subseteq \tilde{x} s \tilde{\theta} \subseteq \tilde{\theta}$. This implies that $\tilde{\mu} \tilde{\theta} \subseteq \tilde{\mu} \tilde{\theta} \subseteq \tilde{\theta}$. Now being an intersection of an i-v fuzzy right ideal and an i-v fuzzy left ideal of S, $\tilde{\mu} \cap \tilde{\theta}$ is an i-v fuzzy quasi-ideal of S. Hence, we have $\tilde{\mu} \cap \tilde{\theta} = (\tilde{\mu} \cap \tilde{\theta})^2 = (\tilde{\mu} \cap \tilde{\theta})(\tilde{\mu} \cap \tilde{\theta}) \subseteq \tilde{\mu} \tilde{\theta}$. Similarly, $(\tilde{\mu} \cap \tilde{\theta}) \subseteq \tilde{\theta} \tilde{\mu}$. Thus we have proved that $\tilde{\mu} \tilde{\theta} = \tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\theta} \tilde{\mu}$. \square

4. INTERVAL-VALUED FUZZY BI-IDEALS OF A SEMIRING:

Definition 4.1. A non-empty i-v fuzzy subset $\tilde{\mu}$ of a semiring S is said to be an i-v fuzzy bi-ideal of S if for any $x, y, z \in S$, $\tilde{\mu}(x + y) \geq \text{Min}^i(\tilde{\mu}(x), \tilde{\mu}(y))$ and $\tilde{\mu}(xyz) \geq \text{Min}^i(\tilde{\mu}(x), \tilde{\mu}(y))$.

We characterize the i-v fuzzy bi-ideals of a semiring in the following lemma.

Lemma 4.2. A non-empty i-v fuzzy subset $\tilde{\mu}$ of a semiring S is an i-v fuzzy bi-ideal of S if and only if $\tilde{\mu}(x + y) \geq \text{Min}^i(\tilde{\mu}(x), \tilde{\mu}(y))$ for any $x, y \in S$ and $\tilde{\mu} \chi s \tilde{\mu} \subseteq \tilde{\mu}$.

In the following proposition, we state the relation between i-v fuzzy quasi-ideal and i-v fuzzy bi-ideal of a semiring.

Proposition 4.3. Every i-v fuzzy quasi-ideal of a semiring S is also an i-v fuzzy bi-ideal of S.

Proof. Let $\tilde{\mu}$ be an i-v fuzzy quasi-ideal of a semiring S. Then $\tilde{\mu}(x + y) \geq \text{Min}^i(\tilde{\mu}(x), \tilde{\mu}(y))$, for any $x, y \in S$. Now $\tilde{\mu} \chi s \tilde{\mu} \subseteq \tilde{\mu} \chi s \tilde{x} s \tilde{\mu} \subseteq \tilde{\mu} \chi s \tilde{s} s \tilde{\mu} \subseteq \tilde{\mu} \chi s \tilde{\mu}$. Also, $\tilde{\mu} \chi s \tilde{\mu} \subseteq \tilde{x} s \tilde{\mu} \chi s \tilde{s} s \tilde{\mu} \subseteq \tilde{x} s \tilde{\mu} \chi s \tilde{\mu} \subseteq \tilde{x} s \tilde{\mu} \cap \tilde{x} s \tilde{\mu} \subseteq \tilde{\mu} \chi s \tilde{s} s \tilde{\mu}$. Hence, we get $\tilde{\mu} \chi s \tilde{\mu} \subseteq \tilde{x} s \tilde{\mu} \cap \tilde{x} s \tilde{\mu}$. Since, $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of S, it follows that $\tilde{\mu} \chi s \tilde{\mu} \subseteq \tilde{x} s \tilde{\mu} \cap \tilde{x} s \tilde{\mu} \subseteq \tilde{\mu}$. Consequently, $\tilde{\mu}$ is an i-v fuzzy bi-ideal of S. \square

We note that the converse of the above Proposition does not hold in general.
Definition 4.4. Let $\tilde{\mu}$ be a non-empty i-v fuzzy subset of a semiring S. Then the i-v fuzzy bi-ideal of S generated by $\tilde{\mu}$ is denoted by $(\tilde{\mu})_b$ and is defined as the intersection of all i-v fuzzy bi-ideals of S containing $\tilde{\mu}$.

Lemma 4.5. Let $\tilde{\mu}$ be a non-empty i-v fuzzy subset of a semiring S. Then, we have the following equality.

$$(\tilde{\mu})_b = \inf_{x \in IFB(S)} (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu})$$

Proof. We first prove that $<\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}>$ is an i-v fuzzy bi-ideal of S, containing $\tilde{\mu}$. Similar to the proof given in Lemma 3.10 (i), we can show that $<\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}> \subseteq (x + y) \geq \min^1 \left(<\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}> (x), <\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}> (y) \right)$, for any $x, y \in S$. Now, we easily deduce that

$$(\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) \tilde{x} (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) = (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) (\tilde{\mu} \tilde{x} \tilde{\mu} \cup \tilde{\mu} \tilde{x} \tilde{\mu} \cup \tilde{\mu} \tilde{x} \tilde{\mu} \tilde{x} \tilde{\mu})$$

$$(\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) \tilde{x} (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) \subseteq (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) (\tilde{\mu} \tilde{x} \tilde{\mu} \cup \tilde{\mu} \tilde{x} \tilde{\mu} \cup \tilde{\mu} \tilde{x} \tilde{\mu} \tilde{x} \tilde{\mu})$$

Consequently, $<\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}>$ is an i-v fuzzy bi-ideal of S and clearly, it contains $\tilde{\mu}$. Suppose that $IFB(S)$ denote the set of all i-v fuzzy bi-ideals of S. Let $x \in S$. Then, we have $(\tilde{\mu})_b = \inf_{x \in IFB(S)} (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) (x)$

$$\inf_{x \in IFB(S)} (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) (x) = \inf_{x \in IFB(S)} (\tilde{\mu} \cup \tilde{\mu}^2 \cup \tilde{\mu} \tilde{x} \tilde{\mu}) (x)$$

For i-v fuzzy bi-ideals of a semiring, we have the following Proposition.

Proposition 4.6. The product of an i-v fuzzy bi-ideal and an i-v fuzzy sub-semiring of a semiring S is still an i-v fuzzy bi-ideal of S.

The following corollaries are easy consequence of the above Proposition.

Corollary 4.7. The product of two i-v fuzzy bi-ideals of a semiring is again an i-v fuzzy bi-ideal of S.

11
Corollary 4.8. The product of two i-v fuzzy quasi-ideals of a semiring is an i-v fuzzy bi-ideal of S.

In the following theorem, we state some properties of fuzzy quasi-ideals of a regular semiring.

Theorem 4.9. Let S be a regular semiring. The following properties of a quasi-ideal of S hold.

(i) Each i-v fuzzy quasi-ideal $\tilde{\mu}$ of S satisfies $\tilde{\mu} = \tilde{\theta} \cap \tilde{\eta} = \tilde{\eta} \tilde{\eta}$, where $\tilde{\theta} = (\tilde{\mu})_r$, and $\tilde{\eta} = (\tilde{\mu})_l$.
(ii) Each i-v fuzzy quasi-ideal $\tilde{\mu}$ of S satisfies $\tilde{\mu}^2 = \tilde{\mu}^3$.
(iii) Each i-v fuzzy bi-ideal of S is an i-v fuzzy quasi-ideal of S.
(iv) Each i-v fuzzy bi-ideal of a two-sided ideal T of S is an i-v fuzzy quasi-ideal of S.

Proof. (i) In a regular semiring S, each i-v fuzzy quasi-ideal $\tilde{\mu}$ of S satisfies $\tilde{\mu} = \tilde{\chi}_{S\tilde{\mu}}\cap \tilde{\chi}_{S\tilde{\mu}}$, by Theorem 3.13. Hence, it suffices to prove that $(\tilde{\mu})_l = \tilde{\chi}_{S\tilde{\mu}}$ and $(\tilde{\mu})_r = \tilde{\mu}\tilde{\chi}_{S}$. Now, we deduce the followings:

$$\tilde{\chi}_{S\tilde{\mu}} \subseteq < \tilde{\mu} \cup \tilde{\chi}_{S\tilde{\mu}} > = < \tilde{\mu} \cup \tilde{\chi}_{S\tilde{\mu}} > < \tilde{\mu} \cup \tilde{\chi}_{S\tilde{\mu}} >$$ (since, in a regular semiring S,

$\tilde{\mu}^2 = \tilde{\mu}_l^2$, where, $\tilde{\mu}_l$ is an i-v fuzzy left ideal of S, by Theorem 3.13)

$\subseteq < \tilde{\mu}^2 \cup \tilde{\mu}\tilde{\chi}_{S\tilde{\mu}} \cup \tilde{\chi}_{S\tilde{\mu}} > < \tilde{\mu}\tilde{\chi}_{S\tilde{\mu}} > < \tilde{\mu}\tilde{\chi}_{S\tilde{\mu}} >$ (since, by Theorem 3.14, $\tilde{\mu} = \tilde{\mu}^2$)

$\subseteq < \tilde{\chi}_{S\tilde{\mu}} \cup \tilde{\chi}_{S\tilde{\mu}} \cup \tilde{\chi}_{S\tilde{\mu}} \cup \tilde{\chi}_{S\tilde{\mu}} >$ (since, by Theorem 3.14, $\tilde{\mu} = \tilde{\mu}^2$)

Thus, we obtain $\tilde{\chi}_{S\tilde{\mu}} \subseteq < \tilde{\mu} \cup \tilde{\chi}_{S\tilde{\mu}} > \subseteq \tilde{\chi}_{S\tilde{\mu}}$. So, $\tilde{\chi}_{S\tilde{\mu}} = < \tilde{\mu} \cup \tilde{\chi}_{S\tilde{\mu}} > = (\tilde{\mu})_l$.

Similarly, we can get that $\tilde{\mu}_r = \tilde{\chi}_{S\tilde{\mu}} = (\tilde{\mu})_r$. Therefore, $\tilde{\mu} = \tilde{\chi}_{S\tilde{\mu}} \cap \tilde{\mu}\tilde{\chi}_{S} = < \tilde{\mu} \cup \tilde{\chi}_{S\tilde{\mu}} > \cap < \tilde{\mu} \cup \tilde{\mu}\tilde{\chi}_{S} > = (\tilde{\mu})_l \cap (\tilde{\mu})_r = (\tilde{\mu})_r$, by Theorem 3.12.

(ii) Let $\tilde{\mu}$ be an i-v fuzzy quasi-ideal of S. Then by Theorem 3.13, it follows that $\tilde{\mu}^2$ is a i-v fuzzy quasi-ideal of S, since S is regular. Then by Theorem 3.13, we have $\tilde{\mu}^2 = \tilde{\mu}^2 \tilde{\chi}_S \tilde{\mu}^2 = \tilde{\mu}(\tilde{\mu}\tilde{\chi}_{S\tilde{\mu}}) \tilde{\mu} = \tilde{\mu}\tilde{\mu}\tilde{\mu} = \tilde{\mu}^3$.

(iii) Let $\tilde{\mu}$ be an i-v fuzzy bi-ideal of S. Then $\tilde{\mu}\tilde{\chi}_{S\tilde{\mu}} = \tilde{\mu}\tilde{\chi}_{S\tilde{\mu}} \subseteq \tilde{\mu}\tilde{\chi}_{S\tilde{\mu}} \subseteq \tilde{\mu}$ (since $\tilde{\mu}$ is an i-v fuzzy bi-ideal of S), thus $\tilde{\mu}$ is an i-v fuzzy quasi-ideal of S.

(iv) Suppose that $\tilde{\mu}_l$ be an i-v fuzzy bi-ideal of a two sided ideal T of S. Let $t \in T \subseteq S$. Since S is regular, there exist $u \in S$ such that $t = utu$. This implies that $t = (tut)$. Since T is a two-sided ideal of S, $atu \in T$ and
Theorem 4.11. (follows from the regularity of T and Theorem 3.13)

Then, we deduce that in intra-regular, there exist $a\in S$ such that $x = \sum_{i=1}^{m} a_i x^2 b_i$. A semiring S is said to be intra-regular if its every element is intra-regular.

Proof. Let S be an intra-regular semiring. Let $\mu\in L$ and θ be an i.v. fuzzy left ideal and an i-v fuzzy right ideal of S respectively. Suppose that $x \in S$. Since, S is intra-regular, there exist $a_i, b_i \in S$ such that $x = \sum_{i=1}^{n} a_i x^2 b_i$. So, $x = \sum_{i=1}^{n} (a_i x)(x b_i)$.

Then, we deduce that

$$
(\tilde{\mu} \tilde{\theta})(x) = \sup \left\{ \inf_{1 \leq i \leq k} \left\{ \min^{i}(\tilde{\mu}(p_i), \tilde{\theta}(q_i)) : x = \sum_{i=1}^{k} p_i q_i \right\} : p_i, q_i \in S \right\}
$$

$$
\geq \inf_{1 \leq i \leq n} \{ \max^{i}(\tilde{\mu}(a_i x), \tilde{\theta}(x b_i)) \}
$$

$$
\geq \inf_{1 \leq i \leq n} \{ \min^{i}(\tilde{\mu}(x), \tilde{\theta}(x)) \}
$$

(since, $\tilde{\mu}$ is an i-v fuzzy left ideal and $\tilde{\theta}$ is an i-v fuzzy right ideal of S)

$$
= \min^{i}(\tilde{\mu}(x), \tilde{\theta}(x))
$$

$$
= (\tilde{\mu} \cap \tilde{\theta})(x).
$$

Thus, we obtain $\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \tilde{\theta}$.

Conversely, suppose that $\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \tilde{\theta}$, for any i-v fuzzy left ideal $\tilde{\mu}$ and i-v fuzzy right ideal $\tilde{\theta}$ of S. Let L and R be a left ideal and a right ideal of S respectively. Then,
by our assumption, we have \(\overline{x_L} \cap \overline{x_R} \subseteq \overline{x_Lx_R} \). This implies that \(\overline{x_{L\cap R}} \subseteq \overline{x_{LR}} \), by Lemma 2.13 and Lemma 2.14. Thus, we have shown that \(L \cap R \subseteq LR \). Hence, \(S \) is an intra-regular semiring, by Theorem 4.11.

Now we state the main theorem. This theorem is a characterization theorem of a regular and intra-regular semiring \(S \) in terms of their \(i\)-\(v \) fuzzy quasi-ideal and \(i\)-\(v \) fuzzy bi-ideal of \(S \).

Theorem 4.13. Let \(S \) be a semiring. Then the following statements are equivalent.

(i) \(S \) is regular and intra-regular.

(ii) Every \(i\)-\(v \) fuzzy quasi-ideal of \(S \) is idempotent.

(iii) Every \(i\)-\(v \) fuzzy bi-ideal of \(S \) is idempotent.

(iv) \(\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \tilde{\theta} \) for all \(i\)-\(v \) fuzzy quasi-ideals \(\tilde{\mu} \) and \(\tilde{\theta} \) of \(S \).

(v) \(\mu \cap \theta \subseteq \mu \theta \) for every \(i\)-\(v \) fuzzy quasi-ideal \(\mu \) and \(i\)-\(v \) fuzzy bi-ideal \(\theta \) of \(S \).

(vi) \(\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \tilde{\theta} \) for every \(i\)-\(v \) fuzzy bi-ideal \(\tilde{\mu} \) and \(i\)-\(v \) fuzzy quasi-ideal \(\tilde{\theta} \) of \(S \).

(vii) \(\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \tilde{\theta} \) for all \(i\)-\(v \) fuzzy bi-ideals \(\tilde{\mu} \) and \(\tilde{\theta} \) of \(S \).

Proof. (i) \(\Rightarrow \) (vii): Let (i) hold and \(x \in S \). Since \(S \) is regular, there exists \(a \in S \) such that \(x = xax \). So we can write \(x = xax \). Again since \(S \) is intra-regular, there exist \(a_i, b_i \in S \) such that \(x = \sum_{i=1}^{m} a_ix^2b_i \), where \(m \in \mathbb{N} \). Then from (1), we have \(x = xax + \sum_{i=1}^{m} (xaax)(xbax) \). Now let \(\tilde{\mu} \) and \(\tilde{\theta} \) be two \(i\)-\(v \) fuzzy bi-ideals of \(S \). Then, the following conditions hold:

\[
(\tilde{\mu} \tilde{\theta})(x) = \sup \left\{ \inf_{1 \leq i \leq m} \{\text{Min}^1(\tilde{\mu}(p_i), \tilde{\theta}(q_i)) : x = \sum_{i=1}^{n} p_iq_i, p_i, q_i \in S\} \right\}
\geq \inf_{1 \leq i \leq m} \{\text{Min}^1(\tilde{\mu}(xaax), \tilde{\theta}(xbax))\}
\geq \inf_{1 \leq i \leq m} \{\text{Min}^1\left(\text{Min}^1(\tilde{\mu}(x), \tilde{\mu}(x)), \text{Min}^1(\tilde{\theta}(x), \tilde{\theta}(x))\right)\}
\]

(since \(\tilde{\mu} \) and \(\tilde{\theta} \) are \(i\)-\(v \) fuzzy bi-ideals of \(S \))

\[
= \text{Min}^1(\tilde{\mu}(x), \tilde{\theta}(x))
= (\tilde{\mu} \cap \tilde{\theta})(x).
\]

Consequently, \(\tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \tilde{\theta} \).

(vii) \(\Rightarrow \) (vi): This implication is clear since each \(i\)-\(v \) fuzzy quasi-ideal of \(S \) is also an \(i\)-\(v \) fuzzy bi-ideal of \(S \).

(vi) \(\Rightarrow \) (v): Suppose that (vi) holds. Let \(\tilde{\mu} \) be an \(i\)-\(v \) fuzzy quasi-ideal and \(\tilde{\theta} \) be an \(i\)-\(v \) fuzzy bi-ideal of \(S \). Then \(\tilde{\mu} \) is also an \(i\)-\(v \) fuzzy bi-ideal of \(S \). Now, by our assumption, we have \(\tilde{\mu} \cap (\tilde{\theta})_0 \subseteq \tilde{\mu} \tilde{\theta} = \tilde{\mu} \cup (\tilde{\theta} \tilde{x}_S \cap \tilde{x}_S \tilde{\theta}) \). As \(\tilde{x}_S \) is an \(i\)-\(v \) fuzzy right ideal of \(S \), it is an \(i\)-\(v \) fuzzy quasi-ideal as well as an \(i\)-\(v \) fuzzy bi-ideal of \(S \). Again \(\tilde{x}_S \tilde{\theta} \) is an \(i\)-\(v \) fuzzy left ideal and hence an \(i\)-\(v \) fuzzy quasi-ideal of \(S \). Thus, by our assumption, we conclude that \(\tilde{\theta} \tilde{x}_S \cap \tilde{x}_S \tilde{\theta} \subseteq \tilde{\theta} \tilde{x}_S \tilde{\theta} \subseteq \tilde{\theta} \), since \(\tilde{\theta} \) is an \(i\)-\(v \) fuzzy bi-ideal of \(S \). Then by (2), we have \(\tilde{\mu} \cap (\tilde{\theta})_0 \subseteq \tilde{\mu} \cup (\tilde{\theta} \cup \tilde{\theta}) \subseteq
< \mu \tilde{\theta} > = \tilde{\mu} \tilde{\theta}. \text{ Thus, } \tilde{\mu} \cap \tilde{\theta} \subseteq \tilde{\mu} \cap (\tilde{\theta})_q \subseteq \tilde{\mu} \tilde{\theta}.

(v) \implies (iv) : \text{ It is clear since each i-v fuzzy quasi-ideal of } S \text{ is also an i-v fuzzy bi-ideal of } S.

(iv) \implies (iii) : \text{ Suppose that (iv) holds. Let } \tilde{\mu} \text{ be an i-v fuzzy bi-ideal of } S. \text{ Now, by our assumption, we have } \tilde{\mu} \subseteq (\tilde{\mu})_q = (\tilde{\mu} \cap (\tilde{\mu})_q)_q = < \tilde{\mu} \cup (\tilde{\mu} \tilde{\chi} \tilde{s} \cap \tilde{s} \tilde{\mu}) > < \tilde{\mu} \cup (\tilde{\mu} \tilde{x} \tilde{s} \cap \chi \tilde{s} \tilde{\mu}) > \ldots \ldots (3).

\text{ Finally, by our assumption, we have } \tilde{\mu} \tilde{x} \tilde{s} \cap \tilde{x} \tilde{s} \tilde{\mu} \subseteq \tilde{\mu} \tilde{x} \tilde{e} \tilde{s} \tilde{\mu} \subseteq \tilde{\mu} \tilde{x} \tilde{s} \tilde{\mu} \subseteq \tilde{\mu} \text{ since } \tilde{\mu} \text{ is an i-v fuzzy bi-ideal of } S. \text{ Hence, from (iii), it follows that } \tilde{\mu} \subseteq < \tilde{\mu} > < \tilde{\mu} > \subseteq < \tilde{\mu}^2 > = \tilde{\mu}^2. \text{ Again, since } \tilde{\mu} \text{ is an i-v quasi-ideal of } S, \text{ it follows that } \tilde{\mu}^2 \subseteq \tilde{\mu}. \text{ Consequently, we have } \tilde{\mu} = \tilde{\mu}^2.

(iii) \implies (ii) : \text{ This part is clear since each i-v fuzzy quasi-ideal of } S \text{ is also an i-v fuzzy bi-ideal of } S.

(ii) \implies (i) : \text{ This implication follows from Theorem in 3.14, Theorem 3.12 and Theorem 4.12.} \quad \Box

5. Conclusions

We have characterized regular and intra-regular semiring in terms of i-v fuzzy quasi-ideals and i-v fuzzy bi-ideals of a semiring. So this paper helps us to realize that we can study different properties of semirings and even some other algebraic structures from the view of i-v fuzzy set theory. For example, as a continuation of this paper we shall study the k-regularity and k-intra-regularity of a semiring in terms of i-v fuzzy k-quasi ideal and i-v fuzzy k-bi-ideal of semirings.

Acknowledgements. The second author is grateful to CSIR-India for providing financial assistance. We are very much thankful to referees for their valuable comments which help a lot to enrich this paper.

References

SUKHENDU KAR (karsukhendu@yahoo.co.in)
Department of Mathematics, Jadavpur University, Kolkata-700032, India

SUDIPTA PURKAIT (sanuitg@gmail.com)
Department of Mathematics, Jadavpur University, Kolkata-700032, India

K. P. SHUM (kpshum@ynu.edu.cn)
Institute of Mathematics, Yunnan University, Kunming, 650091, People Republic of China